Advertisement

The Visual Computer

, Volume 33, Issue 3, pp 283–291 | Cite as

Mass spring models with adjustable Poisson’s ratio

  • Maciej KotEmail author
  • Hiroshi Nagahashi
Original Article

Abstract

In this paper we show how to construct mass spring models for the representation of homogeneous isotropic elastic materials with adjustable Poisson’s ratio. Classical formulation of elasticity on mass spring models leads to the result, that while materials with any value of Young’s modulus can be modeled reliably, only fixed value of Poisson’s ratio is possible. We show how to extend the conventional model to overcome this limitation. The technique is demonstrated on cubic lattice as well as disordered networks.

Keywords

Mass spring model Soft body deformation Physically based modeling 

Notes

Acknowledgments

Authors acknowledge the support of JSPS KAKENHI (Grant Number 24300035).

References

  1. 1.
    Baudet, V., Beuve, M., Jaillet, F., Shariat, B., Zara, F.: Integrating Tensile Parameters in 3D Mass-Spring System. Technical Report RR-LIRIS-2007-004, LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université Lumiére Lyon 2/École Centrale de Lyon (2007)Google Scholar
  2. 2.
    Hardy, R.J.: Formulas for determining local properties in molecular-dynamics simulations - Shock waves. J. Chem. Phys. 76, 622–628 (1982)CrossRefGoogle Scholar
  3. 3.
    Kot, M., Nagahashi, H., Szymczak, P.: Elastic moduli of simple mass spring models. Vis. Comput. 31(10), 1339–1350 (2015)CrossRefGoogle Scholar
  4. 4.
    Ladd, A.J.C., Kinney, J.H.: Elastic constants of cellular structures. Phys. A Stat. Theor. Phys. 240(1–2), 349–360 (1997)CrossRefGoogle Scholar
  5. 5.
    Lakes, R.S.: Deformation mechanisms in negative Poisson’s ratio materials: structural aspects. J. Mater. Sci. 26, 2287–2292 (1991)CrossRefGoogle Scholar
  6. 6.
    Liu, T., Bargteil, A.W., O’Brien, J.F., Kavan, L.: Fast simulation of mass-spring systems. Proceedings of ACM SIGGRAPH Asia 2013, ACM Transactions on Graphics, vol. 32(6), pp. 209:1–7. Hong Kong (2013)Google Scholar
  7. 7.
    Love, A.E.H.: A treatise on the mathematical theory of elasticity. Cambridge University Press, Cambridge (1906)zbMATHGoogle Scholar
  8. 8.
    Nealen, A., Müller, M., Keiser, R., Boxerman, E., Carlson, M., Ageia, N.: Physically based deformable models in computer graphics. Comput. Graph. Forum 25(4), 809–836 (2006)CrossRefGoogle Scholar
  9. 9.
    Ostoja-Starzewski, M.: Lattice models in micromechanics. Appl. Mech. Rev. 55(1), 35–60 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007)zbMATHGoogle Scholar
  11. 11.
    Sahimi, M.: Rigidity and Elastic Properties: The Discrete Approach. In: Heterogeneous Materials: Linear Transport and Optical Properties. Interdisciplinary Applied Mathematics vol. 1, (Chapter 8). Springer, New York (2003)Google Scholar
  12. 12.
    San-Vicente, G., Aguinaga, I., Celigueta, J.T.: Cubical mass-spring model design based on a tensile deformation test and nonlinear material model. IEEE Trans. Vis. Comput. Graph. 18(2), 228–241 (2012)CrossRefGoogle Scholar
  13. 13.
    Van Gelder, A.: Approximate simulation of elastic membranes by triangulated spring meshes. J. Graph. Tools 3(2), 21–42 (1998)Google Scholar
  14. 14.
    Zhao, G.-F., Fang, J., Zhao, J.: A 3d distinct lattice spring model for elasticity and dynamic failure. Int. J. Numer. Anal. Methods Geomech. 35(8), 859–885 (2011)CrossRefzbMATHGoogle Scholar
  15. 15.
    Zimmerman, J.A., Webb III, E.B., Hoyt, J.J., Jones, R.E., Klein, P.A., Bammann, D.J.: Calculation of stress in atomistic simulation. Model. Simul. Mater. Sci. Eng. 12(4), S319 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Imaging Science and Engineering LaboratoryTokyo Institute of TechnologyTokyoJapan

Personalised recommendations