Advertisement

The Visual Computer

, Volume 33, Issue 2, pp 221–233 | Cite as

A novel local derivative quantized binary pattern for object recognition

  • Jun Shang
  • Chuanbo ChenEmail author
  • Xiaobing Pei
  • Hu Liang
  • He Tang
  • Mudar Sarem
Original Article

Abstract

Designing efficient and effective keypoint descriptors for an image plays a vital role in many computer vision tasks. The traditional binary descriptors such as local binary pattern and its variants directly perform a binarization operation on the intensity differences of the local affine covariant regions, thus their performance usually drops a lot because of the limited distinctiveness. In this paper, we propose a novel image keypoint descriptor, namely local derivative quantized binary pattern for object recognition. To incorporate the spatial information, we first divide the local affine covariant region into several subregions according to the intensity orders. For each sub region, we quantize the intensity differences between the central pixels and their neighbors in an adaptive way, and then we order the differences and use a hash function to map the differences into binary codes. The binary codes are histogramed to form the feature of each subregion. Furthermore, we utilize multi-scale support regions and pool the histograms together to represent the features of the image. Our approach does not need prior codebook training and hence it is more flexible and easy to be implemented. Moreover, our descriptor can preserve more local brightness and edge information than the traditional binary descriptors. Also, our descriptor is robust to rotation, illumination variations and other geometric transformations. Finally we conduct extensive experiments on three challenging datasets (i.e., 53 Objects, ZuBuD, and Kentucky) for object recognition and the experimental results show that our descriptor outperforms the existing state-of-the-art descriptors.

Keywords

Feature descriptor Local derivative binary pattern  Object recognition 

Notes

Acknowledgments

This work is supported partially by Hubei Provincial Natural Science Foundation of China (No.2013CFB152).

References

  1. 1.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  2. 2.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: SURF: speeded up robust features. Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  3. 3.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, pp. 886–893 (2005)Google Scholar
  4. 4.
    Alcantarilla, P., Bartoli, A., Davison, A.: KAZE features. In: ECCV, pp. 214–227 (2012)Google Scholar
  5. 5.
    Tola, E., Lepetit, V., Fua, P.: Daisy: an efficient dense descriptor applied to wide baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)CrossRefGoogle Scholar
  6. 6.
    Satpathy, A., Jiang, X., Eng, H.L.: Human detection by quadratic classification on subspace of extended histogram of gradients. IEEE Trans. Image Process. 23(1), 287–297 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Singh, C., Walia, E., Mittal, N.: Robust two-stage face recognition approach using global and local features. Vis. Comput. 28(11), 1085–1098 (2012)CrossRefGoogle Scholar
  8. 8.
    Trzcinski, T., Christoudias, M., Fua, P., Lepetit, V.: Learning image descriptors with the boosting-trick. In: NIPS, pp. 278–286 (2012)Google Scholar
  9. 9.
    Wu, H., Miao, Z., Wang, Y., Lin, M.: Optimized recognition with few instances based on semantic distance. Vis. Comput. 31(4), 367–375 (2015)CrossRefGoogle Scholar
  10. 10.
    Li, C., Zhou W., Yuan, S.: Iris recognition based on a novel variation of local binary pattern. Vis. Comput. 31(10), 1419–1429 (2015)Google Scholar
  11. 11.
    Vu, N.S., Caplier, A.: Enhanced patterns of oriented magnitudes for face recognition and image matching. IEEE Trans. Image Process. 21(3), 1352–1365 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nguyen, D.T., Zong, Z., Li, W., Ogunbona, P.: Object detecton using non-redundant local binary patterns. In: ICIP, pp. 4609–4612 (2010)Google Scholar
  14. 14.
    Shrivastava, N., Tyagi, V.: An effective scheme for image texture classification based on binary local structure pattern. Vis. Comput. 30(11), 1223–1232 (2014)CrossRefGoogle Scholar
  15. 15.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: Brief: binary robust independent elementary features. In: ECCV, pp. 778–792 (2010)Google Scholar
  16. 16.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: ICCV, pp. 2564–2571 (2011)Google Scholar
  17. 17.
    Leutengger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: ICCV, pp. 2548–2555 (2011)Google Scholar
  18. 18.
    Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retinal keypoint. In: CVPR, pp. 510–517 (2012)Google Scholar
  19. 19.
    Trzcinski, T., Christoudias, M., Fua, P., Lepetit, V.: Boosting binary keypoint descriptors. In: CVPR, pp. 2874–2881 (2013)Google Scholar
  20. 20.
    Lin, L., Luo, P., Chen, X., Zeng, K.: Representing and recognizing objects with massive local image patches. Pattern Recognit. 45(1), 231–240 (2012)CrossRefzbMATHGoogle Scholar
  21. 21.
    Jiang, B., Tang, J., Lin, L.: Robust feature point matching with sparse model. IEEE Trans. Image Process. 23(12), 5175–5186 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ding, S., Lin, L., Wang, G., Chao, H.: Deep feature learning with relative distance comparison for person re-identification. Pattern Recognit. 48(10), 2993–3003 (2015)CrossRefGoogle Scholar
  23. 23.
    Liu, W., Wang, J., Ji, R., Jiang, Y.-G., Chang, S.-F.: Supervised hasing with kernels. In: CVPR, pp. 2074–2081 (2012)Google Scholar
  24. 24.
    Wang, J., Kumar, S., Chang, S.-F.: Semi-supervised hashing for scalable image retrieval. In: CVPR, pp. 3424–3431 (2010)Google Scholar
  25. 25.
    Cao, Z., Yin. Q., Tang, X., Sun, J.: Face recognition with learning-based descriptor. In: CVPR, pp. 2707–2714 (2010)Google Scholar
  26. 26.
    Guo, Z.H., Zhang, L., Zhang, D.: A completed moderning of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 19(2), 533–544 (2010)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Hussain, S., Triggs, B.: Visual recognition using local quantized patterns. In: ECCV, pp. 716–729 (2012)Google Scholar
  29. 29.
    Satpathy, A., Jiang, X., Eng, H.-L.: LBP-based edge-texture features for object recognition. IEEE Trans. Image Process. 23(5), 1953–1964 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Guo, Z.H., Zhang, L., Zhang, D.: Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit. 43(3), 706–719 (2010)CrossRefzbMATHGoogle Scholar
  31. 31.
    Heikkila, M., Pietikainen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recognit. 42(3), 425–436 (2009)CrossRefzbMATHGoogle Scholar
  32. 32.
    Zhu, C., Bichot, C.-E., Chen, L.: Image region description using orthogonal combination of local binary patterns enhanced with color information. Pattern Recognit. 46(7), 1949–1963 (2013)CrossRefGoogle Scholar
  33. 33.
    Mu, Y.D., Yan, S.C., Liu, Y., Huang, T., Zhou, B.F.: Discriminative local binary patterns for human detection in personal album. In: CVPR, pp. 1–8 (2008)Google Scholar
  34. 34.
    Zhang, J., Huang, K., Yu, Y., Tan, T.: Boosted local structured HOG-LBP for object localization. In: CVPR, pp. 1393–1400 (2011)Google Scholar
  35. 35.
    Nguyen, D.T., Ogunbona, P., Li, W.Q.: A novel shape-based non-redundant local binary pattern descriptor for object detection. Pattern Recognit. 46(5), 1485–1500 (2013)CrossRefGoogle Scholar
  36. 36.
    Hu, R.-X., Jia, W., Ling, H., Chao, Y., Gui, J.: Angular patter and binary angular pattern for shape retrieval. IEEE Trans. Image Process. 23(3), 1118–1127 (2014)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Qi, X., Xiao, R., Li, C.-G., Qiao, Y., Guo, J., Tang, X.: Pairwise rotation invariant co-occurrence local binary pattern. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2199–2213 (2014)CrossRefGoogle Scholar
  38. 38.
    Lei, Z., Pietikainen, M., Li, S.Z.: Learning discriminant face descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 289–302 (2014)CrossRefGoogle Scholar
  39. 39.
    Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors—Survey. http://www.robots.ox.ac.uk/~vgg/research/affine/

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jun Shang
    • 1
    • 3
  • Chuanbo Chen
    • 2
    Email author
  • Xiaobing Pei
    • 2
  • Hu Liang
    • 1
  • He Tang
    • 2
  • Mudar Sarem
    • 2
  1. 1.School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of Software EngineeringHuazhong University of Science and TechnologyWuhanChina
  3. 3.Hubei Co-Innovation Center of Basic Education Information Technology ServicesHubei University of EducationWuhanChina

Personalised recommendations