Advertisement

The Visual Computer

, Volume 33, Issue 2, pp 179–192 | Cite as

A new sparse representation-based object segmentation framework

  • Jincao Yao
  • Huimin YuEmail author
  • Roland Hu
Original Article

Abstract

In this paper, a novel sparse representation-based object segmentation model is proposed. The model follows from a new energy function that combines the level-set-based sparse representation and the independent component-based shape representation within a unified framework. Before the optimization of the proposed energy, a set of training shapes is firstly projected into the shape space spanned by the independent components. For an arbitrary input shape similar to some of the elements in the training set, the minimization of the energy will automatically recover a sparse shape combination according to the neighbors in the projected shape space to guide the variational image segmentation. We test our model on both public datasets and real applications, and the experimental results show the superior segmentation capabilities of the proposed model.

Keywords

Shape segmentation Sparse representation Independent component Pose alignment 

Notes

Acknowledgments

This work is supported by the Natural Science Foundation of China (NSFC No. 61471321 and No. 61202400) and National Key Basic Research Project of China (973 Program 2012CB316400).

References

  1. 1.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Roe, E., Mello, C.A.B.: Restoring images of ancient color postcards. Vis. Comput. 31(5), 627–641 (2015)CrossRefGoogle Scholar
  4. 4.
    Ye, J.T., Xu, G.L.: Geometric flow approach for region-based image segmentation. IEEE Trans. Image Process. 21(12), 4735–4745 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lu, Z., Carneiro, G., Bradley, A.P.: An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells. IEEE Trans. Image Process. 24(4), 1261–1272 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chiwoo, P., Huang, J.Z., Ji, J.X., Ding, Y.: Segmentation, inference and classification of partially overlapping nanoparticles. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 1–10 (2013)CrossRefGoogle Scholar
  7. 7.
    Liu, X., Song, M., Tao, D., Bu, J., Chen, C.: Random geometric prior forest for multiclass object segmentation. IEEE Trans. Image Process. 24(10), 3060–3070 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Yi, C.C., Tian, Y.L.: Localizing text in scene images by boundary clustering, stroke segmentation, and string fragment classification. IEEE Trans. Image Process. 21(9), 4256–4268 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cremers, D., Schmidt, F., Barthel, F.: Shape priors in variational image segmentation: convexity, Lipschitz continuity and globally optimal solutions. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–6 (2005)Google Scholar
  10. 10.
    Lan, R., Sun, H.: Automated human motion segmentation via motion regularities. Vis. Comput. 31(1), 35–53 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cremers, D., Schnorr, C., Weickert, J.: Diffusion-snakes: combining statistical shape knowledge and image information in a variational framework. In: IEEE Workshop on Variational and Level Set Methods in Computer Vision, pp. 137–144 (2001)Google Scholar
  12. 12.
    Tran, T., Pham, V., Shyu, K.: Moment-based alignment for shape prior with variational B-spline level set. Mach. Vis. Appl. 24(5), 1075–1091 (2013)CrossRefGoogle Scholar
  13. 13.
    Lecumberry, F., Pardo, A., Sapiro, G.: Simultaneous object classification and segmentation with high-order multiple shape models. IEEE Trans. Image Process. 19(3), 625–635 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chen, F., Yu, H.M., Hu, R., Zeng, X.: Deep learning shape priors for object segmentation. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1870–1877 (2013)Google Scholar
  15. 15.
    Berretti, S., Del Bimbo, A., Pala, P.: Sparse matching of salient facial curves for recognition of 3-D faces with missing parts. IEEE Trans. Inf. Forensics Secur. 8(2), 374–389 (2013)CrossRefGoogle Scholar
  16. 16.
    Boscaini, D., Castellani, U.: A sparse coding approach for local-to-global 3D shape description. Vis. Comput. 30(11), 1233–1245 (2014)CrossRefGoogle Scholar
  17. 17.
    Chen, F., Yu, H.M., Hu, R.: Shape sparse representation for joint object classification and segmentation. IEEE Trans. Image Process. 22(3), 992–1004 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zhong, M., Qin, H.: Sparse approximation of 3D shapes via spectral graph wavelets. Vis. Comput. 30(6), 751–761 (2014)CrossRefGoogle Scholar
  19. 19.
    Abiantun, R., Prabhu, U., Savvides, M.: Sparse feature extraction for pose-tolerant face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 2061–2073 (2014)CrossRefGoogle Scholar
  20. 20.
    Zhang, S.T., Zhan, Y.Q., Dewan, M., Huang, J.Z.: Sparse shape composition: a new framework for shape prior modeling. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 451–458 (2011)Google Scholar
  21. 21.
    Zhang, S.T., Zhan, Y.Q., Dewan, M., Huang, J.Z., Metaxas, D.N., Zhou, X.S.: Towards robust and effective shape modeling: sparse shape composition. J. Med. Image Anal. 16(3), 265–277 (2012)CrossRefGoogle Scholar
  22. 22.
    Spratling, M.W.: Image segmentation using a sparse coding model of cortical area V1. IEEE Trans. Image Process. 22(4), 1631–1643 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Pierre, C.: Independent component analysis: a new concept. J. Signal Process. 36(3), 287–314 (1994)CrossRefzbMATHGoogle Scholar
  24. 24.
    Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)CrossRefGoogle Scholar
  25. 25.
    Chien, J., Hsieh, H.: Convex divergence ICA for blind source separation. IEEE Trans. Audio Speech Lang. Process. 20(1), 302–313 (2012)CrossRefGoogle Scholar
  26. 26.
    Tao, M., Zhou, F., Liu, Y., Zhang, Z.: Tensorial independent component analysis-based feature extraction for polarimetric SAR data classification. IEEE Trans. Geosci. Remote Sens. 53(5), 2481–2495 (2015)CrossRefGoogle Scholar
  27. 27.
    Chen, S.Q., Cremers, D., Radke, R.J.: Image segmentation with one shape prior—a template-based formulation. J. Image Vis. Comput. 30(12), 1032–1042 (2012)CrossRefGoogle Scholar
  28. 28.
    Gonzalez, R.: Fourier based registration of differentially scaled images. In: IEEE International Conference on Image Processing (ICIP), pp. 1282–1285 (2013)Google Scholar
  29. 29.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. J. Math. Comput. 19(90), 297–301 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Ahn, J., Kim, K., Byun H.: Robust object segmentation using graph cut with object and background seed estimation. In: International Conference on Pattern Recognition (ICPR), pp. 361–364 (2006)Google Scholar
  31. 31.
    Dong, C., Yan, B., Chen, W., Zeng, L., Chen, J., Li, J.: Iterative graph cuts segmentation with local constraints. In: International Conference on Natural Computation (ICNC), pp. 1377–1381 (2013)Google Scholar
  32. 32.
    Bay, H., Tuytelaars, T., Gool, L.V.: Surf: speeded up robust features. J. Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  33. 33.
    Klodt, M., Cremers, D.: A convex framework for image segmentation with moment constraints. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2346–2243 (2011)Google Scholar
  34. 34.
    Donoho, D.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Bredies, K., Lorenz, D.: Linear convergence of iterative soft-thresholding. J. Fourier Anal. Appl. 14(5), 813–837 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.College of Information Science and Electronic EngineeringZhejiang UniversityHangzhouChina
  2. 2.The State Key Laboratory of CAD & CGZhejiang UniversityHangzhouChina

Personalised recommendations