Skip to main content
Log in

Dynamic 3-D computer graphics for designing a diagnostic tool for patients with schizophrenia

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We introduce a novel procedure that uses dynamic 3-D computer graphics as a diagnostic tool for assessing disease severity in schizophrenia patients, based on their reduced influence of top-down cognitive processes in interpreting bottom-up sensory input. Our procedure uses the hollow-mask illusion, in which the concave side of the mask is misperceived as convex, because familiarity with convex faces dominates sensory cues signaling a concave mask. It is known that schizophrenia patients resist this illusion and their resistance increases with illness severity. Our method uses virtual masks rendered with two competing textures: (a) realistic features that enhance the illusion; (b) random-dot visual noise that reduces the illusion. We control the relative weights of the two textures to obtain psychometric functions for controls and patients and assess illness severity. The primary novelty is the use of a rotating mask that is easy to implement on a wide variety of portable devices and avoids the use of elaborate stereoscopic devices that have been used in the past. Thus our method, which can also be used to assess the efficacy of treatments, provides clinicians the advantage to bring the test to the patient’s own environment, instead of having to bring patients to the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hill, H., Johnston, A.: The hollow-face illusion: object-specific knowledge, general assumptions or properties of the stimulus? Perception 36(2), 199–223 (2007). doi:10.1068/p5523

    Article  Google Scholar 

  2. Dima, D., Roiser, J.P., Dietrich, D.E., Bonnemann, C., Lanfermann, H., Emrich, H.M., Dillo, W.: Understanding why patients with schizophrenia do not perceive the hollow-mask illusion using dynamic causal modelling. Neuroimage 46(4), 1180–1186 (2009). doi:10.1016/j.neuroimage.2009.03.033

    Article  Google Scholar 

  3. Dima, D., Dietrich, D.E., Dillo, W., Emrich, H.M.: Impaired top-down processes in schizophrenia: a DCM study of ERPs. Neuroimage 52(3), 824–832 (2010). doi:10.1016/j.neuroimage.2009.12.086

    Article  Google Scholar 

  4. Liarokapis, F.: Special issue on serious games and virtual worlds. Visual Comput 25(12), 1053–1054 (2009). doi:10.1007/s00371-009-0390-9

    Article  Google Scholar 

  5. Kang, K.K., Kim, J.A., Kim, D.: Development of a sensory gate-ball game system for the aged people. Visual Comput 25(12), 1073–1083 (2009). doi:10.1007/s00371-009-0385-6

    Article  MathSciNet  Google Scholar 

  6. Moya, S., Grau, S., Tost, D.: The wise cursor: assisted selection in 3D serious games. Visual Comput 29(6–8), 795–804 (2013). doi:10.1007/s00371-013-0831-3

    Article  Google Scholar 

  7. Jafri, R., Ali, S.A., Arabnia, H.R., Fatima, S.: Computer vision-based object recognition for the visually impaired in an indoors environment: a survey. Visual Comput 30(11), 1197–1222 (2014). doi:10.1007/s00371-013-0886-1

    Article  Google Scholar 

  8. Burke, J.W., McNeill, M.D.J., Charles, D.K., Morrow, P.J., Crosbie, J.H., McDonough, S.M.: Optimising engagement for stroke rehabilitation using serious games. Visual Comput 25(12), 1085–1099 (2009). doi:10.1007/s00371-009-0387-4

    Article  Google Scholar 

  9. Farkas, A.J., Hajnal, A., Shiratuddin, M.F., Szatmary, G.: A proposed treatment for visual field loss caused by traumatic brain injury using interactive visuotactile virtual environment. Innov. Comput. Sci. Softw. Eng., 495-498 (2010). doi:10.1007/978-90-481-9112-3_84

  10. Crosbie, J.H., Lennon, S., McNeill, M.D.J., McDonough, S.M.: Virtual reality in the rehabilitation of the upper limb after stroke: The user’s perspective. Cyberpsychol. Behav. 9(2), 137–141 (2006). doi:10.1089/cpb.2006.9.137

    Article  Google Scholar 

  11. Carter, C.S.: Applying new approaches from cognitive neuroscience to enhance drug development for the treatment of impaired cognition in schizophrenia. Schizophr. Bull. 31(4), 810–815 (2005). doi:10.1093/schbul/sbi046

    Article  Google Scholar 

  12. Chapman, J.: The early symptoms of schizophrenia. Br. J. Psychiatry 112(484), 225–251 (1966)

    Article  Google Scholar 

  13. Wells, D.S., Leventhal, D.: Perceptual grouping in schizophrenia: replication of place and gilmore. J. Abnorm. Psychol. 93(2), 231–234 (1984)

    Article  Google Scholar 

  14. Frith, C.D.: The cognitive neuropsychology of schizophrenia. Essaysin cognitive psychology. L. Erlbaum Associates, Hove, Hillsdale (1992)

  15. Knight, R.A., Silverstein, S.M.: A process-oriented approach for averting confounds resulting from general performance deficiencies in schizophrenia. J. Abnorm. Psychology 110(1), 15–30 (2001). doi:10.1037/0021-843x.110.1.15

    Article  Google Scholar 

  16. Rabinowicz, E.F., Opler, L.A., Owen, D.R., Knight, R.A.: Dot enumeration perceptual organization task (DEPOT): evidence for a short-term visual memory deficit in schizophrenia. J. Abnorm. Psychol. 105(3), 336–348 (1996)

    Article  Google Scholar 

  17. Silverstein, S., Uhlhaas, P.J., Essex, B., Halpin, S., Schall, U., Carr, V.: Perceptual organization in first episode schizophrenia and ultra-high-risk states. Schizophr. Res. 83(1), 41–52 (2006). doi:10.1016/j.schres.2006.01.003

    Article  Google Scholar 

  18. Silverstein, S.M., Keane, B.P.: Vision science and schizophrenia research: toward a re-view of the disorder editors’ introduction to special section. Schizophr. Bull. 37(4), 681–689 (2011). doi:10.1093/schbul/sbr053

    Article  Google Scholar 

  19. Doniger, G.M., Foxe, J.J., Murray, M.M., Higgins, B.A., Javitt, D.C.: Impaired visual object recognition and Dorsal/Ventral stream interaction in schizophrenia. Arch. Gen. Psychiat. 59(11), 1011–1020 (2002). doi:10.1001/archpsyc.59.11.1011

    Article  Google Scholar 

  20. Foxe, J.J., Murray, M.M., Javitt, D.C.: Filling-in in schizophrenia: a high-density electrical mapping and source-analysis investigation of illusory contour processing. Cereb. Cortex 15(12), 1914–1927 (2005). doi:10.1093/cercor/bhi069

    Article  Google Scholar 

  21. Schenkel, L.S., Spaulding, W.D., Silverstein, S.M.: Poor premorbid social functioning and theory of mind deficit in schizophrenia: evidence of reduced context processing? J. Psychiat. Res. 39(5), 499–508 (2005). doi:10.1016/j.jpsychires.2005.01.001

    Article  Google Scholar 

  22. Gold, J.M., Fuller, R.L., Robinson, B.M., Braun, E.L., Luck, S.J.: Impaired top-down control of visual search in schizophrenia. Schizophr. Res. 94(1–3), 148–155 (2007). doi:10.1016/j.schres.2007.04.023

    Article  Google Scholar 

  23. Koethe, D., Kranaster, L., Hoyer, C., Gross, S., Neatby, M.A., Schultze-Lutter, F., Ruhrmann, S., Klosterkotter, J., Hellmich, M., Leweke, F.M.: Binocular depth inversion as a paradigm of reduced visual information processing in prodromal state, antipsychotic-naive and treated schizophrenia. Eur. Arch. Psychiatry Clin. N 259(4), 195–202 (2009). doi:10.1007/s00406-008-0851-6

  24. Schneider, U., Borsutzky, M., Seifert, J., Leweke, F.M., Huber, T.J., Rollnik, J.D., Emrich, H.M.: Reduced binocular depth inversion in schizophrenic patients. Schizophr. Res. 53(1–2), 101–108 (2002)

    Article  Google Scholar 

  25. Georgeson, M.A.: Random-dot stereograms of real objects: observation on stereo faces and moulds. Perception 8(5), 585–588 (1979)

    Article  Google Scholar 

  26. Gregory, R.L.: The intelligent eye. Weidenfeld & Nicolson, London (1970)

    Google Scholar 

  27. Klopfer, D.S.: Apparent reversals of a rotating mask—a new demonstration of cognition in perception. Percept. Psychophys. 49(6), 522–530 (1991). doi:10.3758/Bf03212186

    Article  Google Scholar 

  28. Papathomas, T.V., Bono, L.M.: Experiments with a hollow mask and a reverspective: top-down influences in the inversion effect for 3-d stimuli. Perception 33(9), 1129–1138 (2004). doi:10.1068/p5086

    Article  Google Scholar 

  29. Keane, B.P., Silverstein, S.M., Wang, Y.S., Papathomas, T.V.: Reduced depth inversion illusions in schizophrenia are state-specific and occur for multiple object types and viewing conditions. J. Abnorm. Psychol. 122(2), 506–512 (2013). doi:10.1037/a0032110

    Article  Google Scholar 

  30. Yellott, J.I., Kaiwi, J.L.: Depth inversion despite stereopsis: the appearance of random-dot stereograms on surfaces seen in reverse perspective. Perception 8(2) (1979). doi:10.1068/p080135471677

  31. Van den Enden, A., Spekreijse, H.: Binocular depth reversals despite familiarity cues. Science 244(4907), 959–961 (1989). doi:10.1126/science.2727687

    Article  Google Scholar 

  32. Wallach, H., O’Connell, D.N.: The kinetic depth effect. J. Exp. Psychol. 45(4), 205–217 (1953). doi:10.1037/h0056880

    Article  Google Scholar 

  33. Ullman, S.: The interpretation of visual motion. Massachusetts Inst of Technology Pr, Oxford, England, p 229, Oxford (1979)

  34. Papathomas, T.V.: Art pieces that ’move’ in our minds—an explanation of illusory motion based on depth reversal. Spat. Vision 21(1–2), 79–95 (2008). doi:10.1163/156856808782713852

    Article  Google Scholar 

  35. Vuong, Q.C.: MorphDemo. http://ftp.tuebingen.mpg.de/pub/pub_dahl/stmdev10_D/Matlab6/Psychtoolbox/PsychDemos/OpenGL4MatlabDemos/MorphDemo/MorphDemo.m (2010). Accessed 18 May 2014

  36. Brainard, D.H.: The psychophysics toolbox. Spat. Vision 10(4), 433–436 (1997). doi:10.1163/156856897x00357

  37. Kleiner, M., Brainard, D., Pelli, D.: What’s new in Psychtoolbox-3? Perception 36, 14–14 (2007)

    Google Scholar 

  38. Pelli, D.G.: The videotoolbox software for visual psychophysics: transforming numbers into movies. Spat. Vision 10(4), 437–442 (1997). doi:10.1163/156856897x00366

    Article  Google Scholar 

  39. Bar, M., Kassam, K.S., Ghuman, A.S., Boshyan, J., Schmidt, A.M., Dale, A.M., Hamalainen, M.S., Marinkovic, K., Schacter, D.L., Rosen, B.R., Halgren, E.: Top-down facilitation of visual recognition. Proc. Natl. Acad. Sci. USA 103(8), 449–454 (2006). doi:10.1073/pnas.0600325103

  40. Nuechterlein, K.H., Dawson, M.E., Green, M.F.: Information-processing abnormalities as neuropsychological vulnerability indicators for schizophrenia. Acta Psychiat. Scand. 90, 71–79 (1994). doi:10.1111/j.1600-0447.1994.tb05894

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Farkas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (wmv 396352 KB)

Supplementary material 2 (wmv 492139 KB)

Supplementary material 3 (wmv 56795 KB)

Supplementary material 4 (wmv 83316 KB)

Supplementary material 5 (wmv 97988 KB)

Supplementary material 6 (wmv 144660 KB)

Supplementary material 7 (wmv 109811 KB)

Supplementary material 8 (wmv 62310 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farkas, A., Papathomas, T.V., Silverstein, S.M. et al. Dynamic 3-D computer graphics for designing a diagnostic tool for patients with schizophrenia. Vis Comput 32, 1499–1506 (2016). https://doi.org/10.1007/s00371-015-1152-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1152-5

Keywords

Navigation