An experimental study on the effects of shading in 3D perception of volumetric models

Abstract

Throughout the years, many shading techniques have been developed to improve the conveying of information in volume visualization. Some of these methods, usually referred to as realistic, are supposed to provide better cues for the understanding of volume data sets. While shading approaches are heavily exploited in traditional monoscopic setups, no previous study has analyzed the effect of these techniques in virtual reality. To further explore the influence of shading on the understanding of volume data in such environments, we carried out a user study in a desktop-based stereoscopic setup. The goals of the study were to investigate the impact of well-known shading approaches and the influence of real illumination on depth perception. Participants had to perform three different perceptual tasks when exposed to static visual stimuli. 45 participants took part in the study, giving us 1152 trials for each task. Results show that advanced shading techniques improve depth perception in stereoscopic volume visualization. As well, external lighting does not affect depth perception when these shading methods are applied. As a result, we derive some guidelines that may help the researchers when selecting illumination models for stereoscopic rendering.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Ayten, H., Herder, J., Vonolfen, W.: Visual acceptance evaluation of soft shadow algorithms for virtual tv studios. In: 13th International Conference on Humans and Computers, pp. 66–71 (2010)

  2. 2.

    Bach, C., Scapin, D.L.: Comparing inspections and user testing for the evaluation of virtual environments. Int. J. Hum.-Comput. Interact. 26(8), 786–824 (2010)

    Article  Google Scholar 

  3. 3.

    Baer, R., Adler, F., Lenz, D., Preim, B.: Preim b. perception-based evaluation of emphasis techniques used. In: 3D Medical Visualization. In: Vision, Modeling, and Visualization Workshop, pp. 295–304 (2009)

  4. 4.

    Boucheny, C., Bonneau, G.P., Droulez, J., Thibault, G., Ploix, S.: A perceptive evaluation of volume rendering techniques. In: APGV: 4th Symposium on Applied Perception in Graphics and Visualization, pp. 83–90 (2007)

  5. 5.

    Bowman, D.A., Gabbard, J.L., Hix, D.: A survey of usability evaluation in virtual environments: classification and comparison of methods. Presence: Teleoper. Virtual Environ. 11(4), 404–424 (2002)

    Article  Google Scholar 

  6. 6.

    Díaz, J., Ropinski, T., Navazo, I., Gobbetti, E., Vázquez, P.P.: Perceptual effects of volumetric shading models in desktop-based stereoscopic environments. In: Computer Graphics International. Strasbourg, France (2015)

  7. 7.

    Díaz, J., Vázquez, P.P., Navazo, I., Duguet, F.: Real-time ambient occlusion and halos with summed area tables. Comput. Gr. 34, 337–350 (2010)

    Article  Google Scholar 

  8. 8.

    Garau, M., Slater, M., Vinayagamoorthy, V., Brogni, A., Steed, A., Sasse, M.A.: The impact of avatar realism and eye gaze control on perceived quality of communication in a shared immersive virtual environment. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 529–536 (2003)

  9. 9.

    Germani, M., Mengoni, M., Peruzzini, M.: Metrics-based approach for VR technology evaluation in styling product design. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1325–1339. American Society of Mechanical Engineers (2009)

  10. 10.

    Grosset, A., Schott, M., Bonneau, G.P., Hansen, C.: Evaluation of depth of field for depth perception in dvr. In: Proceedings of the 2013 IEEE Pacific Visualization Symposium (PacificVis), pp. 81–88 (2013)

  11. 11.

    Hernell, F., Ljung, P., Ynnerman, A.: Local ambient occlusion in direct volume rendering. IEEE Trans. Vis. Comput. Gr. 15(2), 548–559 (2009)

    Google Scholar 

  12. 12.

    Ijsselsteijn, W., de Ridder, H., Hamberg, R., Bouwhuis, D., Freeman, J.: Perceived depth and the feeling of presence in 3dtv. Displays 18(4), 207–214 (1998)

    Article  Google Scholar 

  13. 13.

    Jönsson, D., Sundén, E., Ynnerman, A., Ropinski, T.: A survey of volumetric illumination techniques for interactive volume rendering. Comput. Gr. Forum 33(1), 27–51 (2014)

    Article  Google Scholar 

  14. 14.

    Kniss, J., Premoze, S., Hansen, C., Shirley, P., McPherson, A.: A model for volume lighting and modeling. IEEE Trans. Vis. Comput. Gr. 9(2), 150–162 (2003)

    Article  Google Scholar 

  15. 15.

    Laha, B., Bowman, D.A.: Identifying the benefits of immersion in virtual reality for volume data visualization. In: Immersive Visualization Revisited Workshop of IEEE VR Conference (2012)

  16. 16.

    Laha, B., Bowman, D.A., Schiffbauer, J.D.: Validation of the mr simulation approach for evaluating the effects of immersion on visual analysis of volume data. Vis. Comput. Gr. IEEE Trans. 19(4), 529–538 (2013)

    Article  Google Scholar 

  17. 17.

    Laha, B., Sensharma, K., Schiffbauer, J.D., Bowman, D.A.: Effects of immersion on visual analysis of volume data. Vis. Comput. Gr. IEEE Trans. 18(4), 597–606 (2012)

    Article  Google Scholar 

  18. 18.

    Langer, M.S., Bülthoff, H.H.: Depth discrimination from shading under diffuse lighting. Perception 29(6), 649–660 (2000)

    Article  Google Scholar 

  19. 19.

    Lee, C., Rincon, G.A., Meyer, G., Hollerer, T., Bowman, D.A.: The effects of visual realism on search tasks in mixed reality simulation. Vis. Comput. Gr. IEEE Trans. 19, 547–556 (2013)

    Article  Google Scholar 

  20. 20.

    Levoy, M.: Display of surfaces from volume data. IEEE Comput. Gr. Appl. 8, 29–37 (1988)

    Article  Google Scholar 

  21. 21.

    Lindemann, F., Ropinski, T.: About the influence of illumination models on image comprehension in direct volume rendering. IEEE Trans. Vis. Comput. Gr. 17(12), 1922–1931 (2011)

    Article  Google Scholar 

  22. 22.

    Liu, B., Todd, J.T., et al.: Perceptual biases in the interpretation of 3d shape from shading. Vis. Res. 44(18), 2135–2146 (2004)

    Article  Google Scholar 

  23. 23.

    Livatino, S., Koffel, C.: Handbook for evaluation studies in virtual reality. In: Virtual Environments, Human–Computer Interfaces and Measurement Systems, 2007. VECIMS 2007. IEEE Symposium, pp. 1–6 (2007)

  24. 24.

    Max, N., Chen, M.: Local and global illumination in the volume rendering integral. In: Scientific Visualization: Advanced Concepts, pp. 259–274 (2010)

  25. 25.

    McMahan, R.P., Bowman, D.A., Zielinski, D.J., Brady, R.B.: Evaluating display fidelity and interaction fidelity in a virtual reality game. Vis. Comput. Gr. IEEE Trans. 18(4), 626–633 (2012)

    Article  Google Scholar 

  26. 26.

    Phong, B.T.: Illumination for computer generated pictures. Commun. ACM 18(6), 311–317 (1975)

    Article  Google Scholar 

  27. 27.

    Pluim, J.P., Maintz, J.A., Viergever, M.A.: Image registration by maximization of combined mutual information and gradient information. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2000, pp. 452–461. Springer (2000)

  28. 28.

    Ropinski, T., Meyer-Spradow, J., Diepenbrock, S., Mensmann, J., Hinrichs, K.H.: Interactive volume rendering with dynamic ambient occlusion and color bleeding. Comput. Gr. Forum (Eurogr. 2008) 27(2), 567–576 (2008)

    Article  Google Scholar 

  29. 29.

    Ruiz, M., Boada, I., Viola, I., Bruckner, S., Feixas, M., Sbert, M.: Obscurance-based volume rendering framework. In: International Symposium on Volume and Point-Based Graphics, pp. 113–120 (2008)

  30. 30.

    Schott, M., Pegoraro, V., Hansen, C., Boulanger, K., Bouatouch, K.: A directional occlusion shading model for interactive direct volume rendering. In: Proceedings of EuroVis’09, pp. 855–862 (2009)

  31. 31.

    Sielhorst, T., Bichlmeier, C., Heining, S., Navab, N.: Depth perception a major issue in medicalar: evaluation study by twenty surgeons. In: Medical Image Computing and Computer-Assisted Intervention MICCAI 2006, Lecture Notes in Computer Science, vol. 4190, pp. 364–372 (2006)

  32. 32.

    Starck, J.L., Murtagh, F., Querre, P., Bonnarel, F.: Entropy and astronomical data analysis: perspectives from multiresolution analysis. Astron. Astrophys. 368(2), 730–746 (2001)

    Article  Google Scholar 

  33. 33.

    Stewart, A.J.: Vicinity shading for enhanced perception of volumetric data. In: IEEE Visualization, pp. 355–362 (2003)

  34. 34.

    Sun, J., Perona, P.: Where is the sun? Nat. Neurosci. 1, 183–184 (1998)

    Article  Google Scholar 

  35. 35.

    Sutcliffe, A., Gault, B.: Heuristic evaluation of virtual reality applications. Interact. Comput. 16(4), 831–849 (2004)

    Article  Google Scholar 

  36. 36.

    Sutcliffe, A.G., Kaur, K.D.: Evaluating the usability of virtual reality user interfaces. Behav. Inf. Technol. 19(6), 415–426 (2000)

    Article  Google Scholar 

  37. 37.

    Thompson, W.B., Willemsen, P., Gooch, A.A., Creem-Regehr, S.H., Loomis, J.M., Beall, A.C.: Does the quality of the computer graphics matter when judging distances in visually immersive environments? Presence: Teleoper. Virtual Environ. 13(5), 560–571 (2004)

    Article  Google Scholar 

  38. 38.

    Vázquez, P.P.: Automatic light source placement for maximum visual information recovery. In: Computer Graphics Forum, vol. 26, pp. 143–156. Wiley Online Library (2007)

  39. 39.

    Šoltészová, V., Patel, D., Viola, I.: Chromatic shadows for improved perception. In: Proceedings of Non-Photorealistic Animation and Rendering (NPAR), pp. 105–115 (2011)

  40. 40.

    Šoltészová, V., Turkay, C., Price, M.C., Viola, I.: A perceptual-statistics shading model. IEEE Trans. Vis. Comput. Gr. 18(12), 2265–2274 (2012)

    Article  Google Scholar 

  41. 41.

    Wanger, L.C., Ferwerda, J.A., Greenberg, D.P.: Perceiving spatial relationships in computer-generated images. IEEE Comput. Graph. Appl. 12(3), 44–51, 54–58 (1992)

Download references

Acknowledgments

The authors thank J. L. Díaz-Barrero and M. Fairén for their valuable contributions and the volunteers who took part in the study. This work was partially supported by the EU FP7 Program under the DIVA project (290277), the Eurostar CAMILIS project, and the TIN2013-47137-C2-1-P and TIN2014-52211-C2-1-R projects of the Spanish Government.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jose Díaz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Díaz, J., Ropinski, T., Navazo, I. et al. An experimental study on the effects of shading in 3D perception of volumetric models. Vis Comput 33, 47–61 (2017). https://doi.org/10.1007/s00371-015-1151-6

Download citation

Keywords

  • Volume illumination
  • Volume visualization
  • Desktop-based stereoscopy
  • Depth perception