The Visual Computer

, Volume 33, Issue 1, pp 47–61 | Cite as

An experimental study on the effects of shading in 3D perception of volumetric models

  • Jose Díaz
  • Timo Ropinski
  • Isabel Navazo
  • Enrico Gobbetti
  • Pere-Pau Vázquez
Original Article


Throughout the years, many shading techniques have been developed to improve the conveying of information in volume visualization. Some of these methods, usually referred to as realistic, are supposed to provide better cues for the understanding of volume data sets. While shading approaches are heavily exploited in traditional monoscopic setups, no previous study has analyzed the effect of these techniques in virtual reality. To further explore the influence of shading on the understanding of volume data in such environments, we carried out a user study in a desktop-based stereoscopic setup. The goals of the study were to investigate the impact of well-known shading approaches and the influence of real illumination on depth perception. Participants had to perform three different perceptual tasks when exposed to static visual stimuli. 45 participants took part in the study, giving us 1152 trials for each task. Results show that advanced shading techniques improve depth perception in stereoscopic volume visualization. As well, external lighting does not affect depth perception when these shading methods are applied. As a result, we derive some guidelines that may help the researchers when selecting illumination models for stereoscopic rendering.


Volume illumination Volume visualization Desktop-based stereoscopy Depth perception 



The authors thank J. L. Díaz-Barrero and M. Fairén for their valuable contributions and the volunteers who took part in the study. This work was partially supported by the EU FP7 Program under the DIVA project (290277), the Eurostar CAMILIS project, and the TIN2013-47137-C2-1-P and TIN2014-52211-C2-1-R projects of the Spanish Government.


  1. 1.
    Ayten, H., Herder, J., Vonolfen, W.: Visual acceptance evaluation of soft shadow algorithms for virtual tv studios. In: 13th International Conference on Humans and Computers, pp. 66–71 (2010)Google Scholar
  2. 2.
    Bach, C., Scapin, D.L.: Comparing inspections and user testing for the evaluation of virtual environments. Int. J. Hum.-Comput. Interact. 26(8), 786–824 (2010)CrossRefGoogle Scholar
  3. 3.
    Baer, R., Adler, F., Lenz, D., Preim, B.: Preim b. perception-based evaluation of emphasis techniques used. In: 3D Medical Visualization. In: Vision, Modeling, and Visualization Workshop, pp. 295–304 (2009)Google Scholar
  4. 4.
    Boucheny, C., Bonneau, G.P., Droulez, J., Thibault, G., Ploix, S.: A perceptive evaluation of volume rendering techniques. In: APGV: 4th Symposium on Applied Perception in Graphics and Visualization, pp. 83–90 (2007)Google Scholar
  5. 5.
    Bowman, D.A., Gabbard, J.L., Hix, D.: A survey of usability evaluation in virtual environments: classification and comparison of methods. Presence: Teleoper. Virtual Environ. 11(4), 404–424 (2002)CrossRefGoogle Scholar
  6. 6.
    Díaz, J., Ropinski, T., Navazo, I., Gobbetti, E., Vázquez, P.P.: Perceptual effects of volumetric shading models in desktop-based stereoscopic environments. In: Computer Graphics International. Strasbourg, France (2015)Google Scholar
  7. 7.
    Díaz, J., Vázquez, P.P., Navazo, I., Duguet, F.: Real-time ambient occlusion and halos with summed area tables. Comput. Gr. 34, 337–350 (2010)CrossRefGoogle Scholar
  8. 8.
    Garau, M., Slater, M., Vinayagamoorthy, V., Brogni, A., Steed, A., Sasse, M.A.: The impact of avatar realism and eye gaze control on perceived quality of communication in a shared immersive virtual environment. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 529–536 (2003)Google Scholar
  9. 9.
    Germani, M., Mengoni, M., Peruzzini, M.: Metrics-based approach for VR technology evaluation in styling product design. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1325–1339. American Society of Mechanical Engineers (2009)Google Scholar
  10. 10.
    Grosset, A., Schott, M., Bonneau, G.P., Hansen, C.: Evaluation of depth of field for depth perception in dvr. In: Proceedings of the 2013 IEEE Pacific Visualization Symposium (PacificVis), pp. 81–88 (2013)Google Scholar
  11. 11.
    Hernell, F., Ljung, P., Ynnerman, A.: Local ambient occlusion in direct volume rendering. IEEE Trans. Vis. Comput. Gr. 15(2), 548–559 (2009)Google Scholar
  12. 12.
    Ijsselsteijn, W., de Ridder, H., Hamberg, R., Bouwhuis, D., Freeman, J.: Perceived depth and the feeling of presence in 3dtv. Displays 18(4), 207–214 (1998)CrossRefGoogle Scholar
  13. 13.
    Jönsson, D., Sundén, E., Ynnerman, A., Ropinski, T.: A survey of volumetric illumination techniques for interactive volume rendering. Comput. Gr. Forum 33(1), 27–51 (2014)CrossRefGoogle Scholar
  14. 14.
    Kniss, J., Premoze, S., Hansen, C., Shirley, P., McPherson, A.: A model for volume lighting and modeling. IEEE Trans. Vis. Comput. Gr. 9(2), 150–162 (2003)CrossRefGoogle Scholar
  15. 15.
    Laha, B., Bowman, D.A.: Identifying the benefits of immersion in virtual reality for volume data visualization. In: Immersive Visualization Revisited Workshop of IEEE VR Conference (2012)Google Scholar
  16. 16.
    Laha, B., Bowman, D.A., Schiffbauer, J.D.: Validation of the mr simulation approach for evaluating the effects of immersion on visual analysis of volume data. Vis. Comput. Gr. IEEE Trans. 19(4), 529–538 (2013)CrossRefGoogle Scholar
  17. 17.
    Laha, B., Sensharma, K., Schiffbauer, J.D., Bowman, D.A.: Effects of immersion on visual analysis of volume data. Vis. Comput. Gr. IEEE Trans. 18(4), 597–606 (2012)CrossRefGoogle Scholar
  18. 18.
    Langer, M.S., Bülthoff, H.H.: Depth discrimination from shading under diffuse lighting. Perception 29(6), 649–660 (2000)CrossRefGoogle Scholar
  19. 19.
    Lee, C., Rincon, G.A., Meyer, G., Hollerer, T., Bowman, D.A.: The effects of visual realism on search tasks in mixed reality simulation. Vis. Comput. Gr. IEEE Trans. 19, 547–556 (2013)CrossRefGoogle Scholar
  20. 20.
    Levoy, M.: Display of surfaces from volume data. IEEE Comput. Gr. Appl. 8, 29–37 (1988)CrossRefGoogle Scholar
  21. 21.
    Lindemann, F., Ropinski, T.: About the influence of illumination models on image comprehension in direct volume rendering. IEEE Trans. Vis. Comput. Gr. 17(12), 1922–1931 (2011)CrossRefGoogle Scholar
  22. 22.
    Liu, B., Todd, J.T., et al.: Perceptual biases in the interpretation of 3d shape from shading. Vis. Res. 44(18), 2135–2146 (2004)CrossRefGoogle Scholar
  23. 23.
    Livatino, S., Koffel, C.: Handbook for evaluation studies in virtual reality. In: Virtual Environments, Human–Computer Interfaces and Measurement Systems, 2007. VECIMS 2007. IEEE Symposium, pp. 1–6 (2007)Google Scholar
  24. 24.
    Max, N., Chen, M.: Local and global illumination in the volume rendering integral. In: Scientific Visualization: Advanced Concepts, pp. 259–274 (2010)Google Scholar
  25. 25.
    McMahan, R.P., Bowman, D.A., Zielinski, D.J., Brady, R.B.: Evaluating display fidelity and interaction fidelity in a virtual reality game. Vis. Comput. Gr. IEEE Trans. 18(4), 626–633 (2012)CrossRefGoogle Scholar
  26. 26.
    Phong, B.T.: Illumination for computer generated pictures. Commun. ACM 18(6), 311–317 (1975)CrossRefGoogle Scholar
  27. 27.
    Pluim, J.P., Maintz, J.A., Viergever, M.A.: Image registration by maximization of combined mutual information and gradient information. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2000, pp. 452–461. Springer (2000)Google Scholar
  28. 28.
    Ropinski, T., Meyer-Spradow, J., Diepenbrock, S., Mensmann, J., Hinrichs, K.H.: Interactive volume rendering with dynamic ambient occlusion and color bleeding. Comput. Gr. Forum (Eurogr. 2008) 27(2), 567–576 (2008)CrossRefGoogle Scholar
  29. 29.
    Ruiz, M., Boada, I., Viola, I., Bruckner, S., Feixas, M., Sbert, M.: Obscurance-based volume rendering framework. In: International Symposium on Volume and Point-Based Graphics, pp. 113–120 (2008)Google Scholar
  30. 30.
    Schott, M., Pegoraro, V., Hansen, C., Boulanger, K., Bouatouch, K.: A directional occlusion shading model for interactive direct volume rendering. In: Proceedings of EuroVis’09, pp. 855–862 (2009)Google Scholar
  31. 31.
    Sielhorst, T., Bichlmeier, C., Heining, S., Navab, N.: Depth perception a major issue in medicalar: evaluation study by twenty surgeons. In: Medical Image Computing and Computer-Assisted Intervention MICCAI 2006, Lecture Notes in Computer Science, vol. 4190, pp. 364–372 (2006)Google Scholar
  32. 32.
    Starck, J.L., Murtagh, F., Querre, P., Bonnarel, F.: Entropy and astronomical data analysis: perspectives from multiresolution analysis. Astron. Astrophys. 368(2), 730–746 (2001)CrossRefGoogle Scholar
  33. 33.
    Stewart, A.J.: Vicinity shading for enhanced perception of volumetric data. In: IEEE Visualization, pp. 355–362 (2003)Google Scholar
  34. 34.
    Sun, J., Perona, P.: Where is the sun? Nat. Neurosci. 1, 183–184 (1998)CrossRefGoogle Scholar
  35. 35.
    Sutcliffe, A., Gault, B.: Heuristic evaluation of virtual reality applications. Interact. Comput. 16(4), 831–849 (2004)CrossRefGoogle Scholar
  36. 36.
    Sutcliffe, A.G., Kaur, K.D.: Evaluating the usability of virtual reality user interfaces. Behav. Inf. Technol. 19(6), 415–426 (2000)CrossRefGoogle Scholar
  37. 37.
    Thompson, W.B., Willemsen, P., Gooch, A.A., Creem-Regehr, S.H., Loomis, J.M., Beall, A.C.: Does the quality of the computer graphics matter when judging distances in visually immersive environments? Presence: Teleoper. Virtual Environ. 13(5), 560–571 (2004)CrossRefGoogle Scholar
  38. 38.
    Vázquez, P.P.: Automatic light source placement for maximum visual information recovery. In: Computer Graphics Forum, vol. 26, pp. 143–156. Wiley Online Library (2007)Google Scholar
  39. 39.
    Šoltészová, V., Patel, D., Viola, I.: Chromatic shadows for improved perception. In: Proceedings of Non-Photorealistic Animation and Rendering (NPAR), pp. 105–115 (2011) Google Scholar
  40. 40.
    Šoltészová, V., Turkay, C., Price, M.C., Viola, I.: A perceptual-statistics shading model. IEEE Trans. Vis. Comput. Gr. 18(12), 2265–2274 (2012)CrossRefGoogle Scholar
  41. 41.
    Wanger, L.C., Ferwerda, J.A., Greenberg, D.P.: Perceiving spatial relationships in computer-generated images. IEEE Comput. Graph. Appl. 12(3), 44–51, 54–58 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jose Díaz
    • 1
  • Timo Ropinski
    • 2
  • Isabel Navazo
    • 3
  • Enrico Gobbetti
    • 1
  • Pere-Pau Vázquez
    • 3
  1. 1.ViC Group, CRS4PulaItaly
  2. 2.Visual Computing Research GroupUlm UniversityUlmGermany
  3. 3.VIRViG Group, Polytechnic University of CataloniaBarcelonaSpain

Personalised recommendations