The Visual Computer

, Volume 33, Issue 1, pp 5–15 | Cite as

Adaptive highlights stencils for modeling of multi-axial BRDF anisotropy

An alternative to analytical anisotropic BRDF modeling
  • Jiří FilipEmail author
  • Michal Havlíček
  • Radomír Vávra
Original Article


Directionally dependent anisotropic material appearance phenomenon is widely represented using bidirectional reflectance distribution function (BRDF). This function needs in practice either reconstruction of unknown values interpolating between sparse measured samples or requires data fidelity preserving compression forming a compact representation from dense measurements. Both properties can be, to a certain extent, preserved by means of analytical BRDF models. Unfortunately, the number of anisotropic BRDF models is limited, and moreover, most require either a demanding iterative optimization procedure dependent on proper initialization or the user setting parameters. Most of these approaches are challenged by the fitting of complex anisotropic BRDFs. In contrast, we approximate BRDF anisotropic behavior by means of highlight stencils and derive a novel BRDF model that independently adapts such stencils to each anisotropic mode present in the BRDF. Our model allows for the fast direct fitting of parameters without the need of any demanding optimization. Furthermore, it achieves an encouraging, expressive visual quality as compared to rival solutions that rely on a similar number of parameters. We thereby ascertain that our method represents a promising approach to the analysis and modeling of complex anisotropic BRDF behavior.


Anisotropic Highlight Stencils BRDF Model 



We thank the anonymous reviewers for their insightful and inspiring comments. This research has been supported by the Czech Science Foundation Grant 14-02652S.

Supplementary material

371_2015_1148_MOESM1_ESM.pdf (22.7 mb)
Supplementary material 1 (pdf 23211 KB)


  1. 1.
    Ashikhmin, M., Shirley, P.: An anisotropic phong light reflection model. J. Graph. Tools 5(2), 25–32 (2000)CrossRefGoogle Scholar
  2. 2.
    Bagher Mahdi, M., Soler, C., Holzschuch, N.: Accurate fitting of measured reflectances using a Shifted Gamma micro-facet distribution. Comput. Graph. Forum 31(4), 1509–1518 (2012)CrossRefGoogle Scholar
  3. 3.
    Blinn, J.: Models of light reflection for computer synthesized pictures. SIGGRAPH Comput. Graph. 11, 192–198 (1977)CrossRefGoogle Scholar
  4. 4.
    Cook, R., Torrance, K.: A reflectance model for computer graphics. ACM SIGGRAPH Comput. Graph. 15(3), 307–316 (1981)CrossRefGoogle Scholar
  5. 5.
    Dupuy, J., Heitz, E., Iehl, J., Poulin, P., Ostromoukhov, V.: Extracting microfacet-based BRDF parameters from arbitrary materials with power iterations. Comput. Graph. Forum 34(4), 21–30 (2015)CrossRefGoogle Scholar
  6. 6.
    Filip, J., Vavra, R.: Template-based sampling of anisotropic BRDFs. Comput. Graph. Forum 33(7), 91–99 (2014)CrossRefGoogle Scholar
  7. 7.
    He, X., Torrance, K., Sillion, F., Greenberg, D.: A comprehensive physical model for light reflection. Comput. Graph. 25(4), 175–186 (1991)CrossRefGoogle Scholar
  8. 8.
    Heitz, E.: Understanding the masking-shadowing function in microfacet-based BRDFs. J. Comput. Graph. Tech. (JCGT) 3(2), 32–91 (2014)Google Scholar
  9. 9.
    Kurt, M., Szirmay-Kalos, L., Křivánek, J.: An anisotropic BRDF model for fitting and Monte Carlo rendering. SIGGRAPH Comput. Graph. 44, 3:1–3:15 (2010)CrossRefGoogle Scholar
  10. 10.
    Lafortune, E.P., Foo, S.C., Torrance, K.E., Greenberg, D.P.: Non-linear approximation of reflectance functions. Comput. Graph. 31(Annual Conference Series), 117–126 (1997)Google Scholar
  11. 11.
    Lawrence, J., Rusinkiewicz, S., Ramamoorthi, R.: Efficient BRDF importance sampling using a factored representation. ACM Trans. Graph. 23(3), 496–505 (2004)CrossRefGoogle Scholar
  12. 12.
    Lu, R., Koenderink, J.J., Kappers, A.M.: Specularities on surfaces with tangential hairs or grooves. Comput. Vis. Image Understand. 78(3), 320–335 (2000)CrossRefGoogle Scholar
  13. 13.
    Nayar, S., Oren, M.: Generalization of the lambertian model and implications for machine vision. Int. J. Comput. Vis. 14, 227–251 (1995)CrossRefGoogle Scholar
  14. 14.
    Nicodemus, F., Richmond, J., Hsia, J., Ginsburg, I., Limperis, T.: Geometrical considerations and nomenclature for reflectance. NBS Monograph 160, 1–52 (1977)Google Scholar
  15. 15.
    Pacanowski, R., Celis, O.S., Schlick, C., Granier, X., Poulin, P., Cuyt, A.: Rational BRDF. IEEE Trans. Vis. Comput. Graph. 18(11), 1824–1835 (2012)CrossRefGoogle Scholar
  16. 16.
    Phong, B.T.: Illumination for computer generated images. Commun. ACM 18(6), 311–317 (1975)CrossRefGoogle Scholar
  17. 17.
    Poulin, P., Fournier, A.: A model for anisotropic reflection. SIGGRAPH Comput. Graph. 24(4), 273–282 (1990)CrossRefGoogle Scholar
  18. 18.
    Raymond, B., Guennebaud, G., Barla, P., Pacanowski, R., Granier, X.: Optimizing BRDF orientations for the manipulation of anisotropic highlights. Comput. Graph. Forum 33, 313–321 (2014)CrossRefGoogle Scholar
  19. 19.
    Rusinkiewicz, S.: A new change of variables for efficient BRDF representation. In: Rendering techniques’ 98, p. 11 (1998)Google Scholar
  20. 20.
    Sadeghi, I., Bisker, O., De Deken, J., Jensen, H.W.: A practical microcylinder appearance model for cloth rendering. ACM Trans. Graph. 32(2), 14:1–14:12 (2013)CrossRefzbMATHGoogle Scholar
  21. 21.
    Schlick, C.: An inexpensive BRDF model for physically-based rendering. Comput. Graph. Forum (EUROGRAPHICS’94) 13(3), 149–162 (1994)Google Scholar
  22. 22.
    Torrance, K., Sparrow, E.: Theory for off-specular reflection from rough surfaces. J. Opt. Soc. Am. 57(9), 1105–1114 (1967)CrossRefGoogle Scholar
  23. 23.
    Ward, G.: Measuring and modeling anisotropic reflection. Comput. Graph. 26(2), 265–272 (1992)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jiří Filip
    • 1
    Email author
  • Michal Havlíček
    • 1
  • Radomír Vávra
    • 1
    • 2
  1. 1.Institute of Information Theory and AutomationASCRPrague 8Czech Republic
  2. 2.Faculty of Information TechnologyCzech Technical UniversityPragueCzech Republic

Personalised recommendations