The Visual Computer

, Volume 32, Issue 12, pp 1621–1631 | Cite as

Efficient decolorization preserving dominant distinctions

  • Zhongping Ji
  • Mei-e Fang
  • Yigang Wang
  • Weiyin Ma
Original Article


Representing color images in grayscale has practical and theoretical importance. Current color-to-gray transformations seldom ensure both quality and efficiency simultaneously in practice. In this paper, we present an efficient global mapping from color to gray while preserving visually dominant features of color images. Our color-to-gray transformation is based on a variant of traditional Difference of Gaussians band-pass filter, which is called luminance filter. The band-pass filter usually has high responses on regions with discriminative colors from their surroundings for certain band. The grayscale is derived from the luminance passing a series of band-pass filters. Our method is linear in the number of pixels, simple to implement and computationally efficient, making it suitable for high resolution images. Experimental results show that our method produces convincing results for a large number of natural and synthetic images.


Decolorization Chromatic orientation Difference of Gaussians Luminance filter 



This work was partially supported by the National Natural Science Foundation of China (61202278, 61272032) and Research Grants Council of Hong Kong SAR (CityU 118512), City University of Hong Kong (SRG 7004072).


  1. 1.
    Bala, R., Eschbach, R.: Spatial color-to-grayscale transform preserving chrominance edge information. In: Color Imaging Conference, pp. 82–86. IS&T—The Society for Imaging Science and Technology (2004)Google Scholar
  2. 2.
    Čadík, M.: Perceptual evaluation of color-to-grayscale image conversions. Comput. Graph. Forum. 27(7), 1745–1754 (2008)CrossRefGoogle Scholar
  3. 3.
    Cui, M., Hu, J., Razdan, A., Wonka, P.: Color-to-gray conversion using ISOMAP. Vis. Comput. 26(11), 1349–1360 (2010)CrossRefGoogle Scholar
  4. 4.
    Gooch, B., Reinhard, E., Gooch, A.: Human facial illustrations: creation and psychophysical evaluation. ACM Trans. Graph. 23(1), 27–44 (2004)CrossRefGoogle Scholar
  5. 5.
    Gooch, A.A., Olsen, S.C., Tumblin, J., Gooch, B.: Color2gray: salience-preserving color removal. ACM Trans. Graph. 24(3), 634–639 (2005)CrossRefGoogle Scholar
  6. 6.
    Grundland, M., Dodgson, N.A.: Decolorize: fast, contrast enhancing, color to grayscale conversion. Pattern Recogn. 40(11), 2891–2896 (2007)CrossRefGoogle Scholar
  7. 7.
    Kang, H., Lee, S., Chui, C.K.: Coherent line drawing. In: ACM Symposium on Non-photorealistic Animation and Rendering. ACM, San Diego, CA, pp. 43–50 (2007)Google Scholar
  8. 8.
    Kim, Y., Jang, C., Demouth, J., Lee, S.: Robust color-to-gray via nonlinear global mapping. ACM Trans. Graph. 28(5), 1611–1614 (2009)Google Scholar
  9. 9.
    Kuhn, G.R., Oliveira, M.M., Fernandes, L.A.F.: An improved contrast enhancing approach for color-to-grayscale mappings. Vis. Comput. 24(7), 505–514 (2008)CrossRefGoogle Scholar
  10. 10.
    Kuk, J.G., Ahn, J.H., Cho, N.I.: A color to grayscale conversion considering local and global contrast. Proceedings of Asian Conference on Computer Vision, Lecture Notes in Computer Science vol. 4, pp. 513–524 (2010)Google Scholar
  11. 11.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Lu, C., Xu, L., Jia, J.: Contrast preserving decolorization. In: IEEE International Conference on Computational Photography. Eurographics Association (2012)Google Scholar
  13. 13.
    Lu, C., Xu, L., Jia, J.: Contrast preserving decolorization with perception-based quality metrics. Int. J. Comput. Vis. 110(2), 222–239 (2014)CrossRefGoogle Scholar
  14. 14.
    Marr, D., Hildnth, E.: Theory of edge detection. Proc. R. Soc. Lond. Bull. B207, 187–217 (1980)CrossRefGoogle Scholar
  15. 15.
    Metzger, W.: Laws of Seeing. The MIT Press, Cambridge (2006)Google Scholar
  16. 16.
    Neumann, L., Cadik, M., Nemcsics, A.: An efficient perception-based adaptive color to gray transformation. In: Workshop on Computational Aesthetics, pp. 73–80. Eurographics Association (2007)Google Scholar
  17. 17.
    Rasche, K., Geist, R., Westall, J.: Re-coloring images for gamuts of lower dimension. Comput. Graph. Forum. 24(3), 423–432 (2005)CrossRefGoogle Scholar
  18. 18.
    Smith, K., Landes, P.-E., Thollot, J., Myszkowski, K.: Apparent greyscale: a simple and fast conversion to perceptually accurate images and video. Comput. Graph. Forum. 27(2), 193–200 (2008)CrossRefGoogle Scholar
  19. 19.
    Wu, J., Shen, X., Liu, L.: Interactive two-scale color-to-gray. Vis. Comput. 28(6), 723–731 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhao, Y., Tamimi, Z.: Spectral image decolorization. In: Advances in Visual Computing–6th International Symposium. ISVC 2010, Las Vegas, NV, USA, November 29–December 1, 2010, Proceedings, Part II, Lecture Notes in Computer Science, pp. 747–756. Springer, Berlin (2010)Google Scholar
  21. 21.
    Zhu, W., Hu, R., Liu, L.: Grey conversion via perceived-contrast. Vis. Comput. 30(3), 299–309 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Zhongping Ji
    • 1
  • Mei-e Fang
    • 1
  • Yigang Wang
    • 1
  • Weiyin Ma
    • 2
  1. 1.School of Computer Science TechnologyHangzhou Dianzi UniversityHangzhouChina
  2. 2.Department of Mechanical and Biomedical EngineeringCity University of Hong KongHong KongChina

Personalised recommendations