The Visual Computer

, Volume 32, Issue 11, pp 1465–1479 | Cite as

Real-time simulation techniques for augmented learning in science and engineering

  • C. Quesada
  • D. González
  • I. Alfaro
  • E. CuetoEmail author
  • A. Huerta
  • F. Chinesta
Original Article


In this paper, we present the basics of a novel methodology for the development of simulation-based and augmented learning tools in the context of applied science and engineering. It is based on the extensive use of model order reduction, and particularly, of the so-called proper generalized decomposition method. This method provides a sort of meta-modeling tool without the need for prior computer experiments that allows the user to obtain real-time response in the solution of complex engineering or physical problems. This real-time capability also allows for its implementation in deployed, touch screen, handheld devices or even to be immersed into electronic textbooks. We explore here the basics of the proposed methodology and give examples on a few challenging applications never until now explored, up to our knowledge.


Augmented learning Real-time simulation Model order reduction Proper generalized decomposition 


  1. 1.
    Alastrue, V., Calvo, B., Pena, E., Doblare, M.: Biomechanical modeling of refractive corneal surgery. J. Biomech. Eng. Trans. ASME 128, 150–160 (2006)CrossRefGoogle Scholar
  2. 2.
    Ammar, A., Chinesta, F., Cueto, E.: Coupling finite elements and proper generalized decompositions. Int. J. Multiscale Comput. Eng. 9(1), 17–33 (2011)CrossRefGoogle Scholar
  3. 3.
    Ammar, A., Chinesta, F., Cueto, E., Doblaré, M.: Proper generalized decomposition of time-multiscale models. Int. J. Numer. Methods Eng. 90(5), 569–596 (2012). doi: 10.1002/nme.3331 MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Ammar, A., Chinesta, F., Diez, P., Huerta, A.: An error estimator for separated representations of highly multidimensional models. Comput. Methods Appl. Mech. Eng. 199(25–28), 1872–1880 (2010). doi: 10.1016/j.cma.2010.02.012.
  5. 5.
    Ammar, A., Cueto, E., Chinesta, F.: Nonincremental proper generalized decomposition solution of parametric uncoupled models defined in evolving domains. Int. J. Numer. Methods Eng. (2012). doi: 10.1002/nme.4413
  6. 6.
    Ammar, A., Cueto, E., Chinesta, F.: Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions. Int. J. Numer. Methods Biomed. Eng. (2012, in press)Google Scholar
  7. 7.
    Ammar, A., Mokdad, B., Chinesta, F., Keunings, R.: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J. Non Newton. Fluid Mech. 139, 153–176 (2006)zbMATHCrossRefGoogle Scholar
  8. 8.
    Ammar, A., Mokdad, B., Chinesta, F., Keunings, R.: A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. part ii: transient simulation using space–time separated representations. J. Non Newton. Fluid Mech. 144, 98–121 (2007)zbMATHCrossRefGoogle Scholar
  9. 9.
    Ammar, A., Pruliere, E., Ferec, J., Chinesta, F., Cueto, E.: Coupling finite elements and reduced approximation bases. Eur. J. Comput. Mech. 18(5–6), 445–463 (2009)zbMATHGoogle Scholar
  10. 10.
    Amsallem, D., Farhat, C.: An interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J. 46, 1803–1813 (2008)CrossRefGoogle Scholar
  11. 11.
    Authors, V.: Final report. DDDAS workshop at Arlington, VA. Tech. rep., National Science Foundation (2006)Google Scholar
  12. 12.
    Barbič, J., James, D.: Time-critical distributed contact for 6-DoF haptic rendering of adaptively sampled reduced deformable models. In: Metaxas, D., Popovic, J. (eds.) Symposium on Computer Animation 2007: ACM Siggraph/Eurographics Symposium Proceedings, pp. 171–180. ACM SIGGRAPH; Eurog Assoc, Assoc Computing Machinery, 1515 Broadway, New York, NY 10036-9998 USA (2007). Symposium on Computer Animation, San Diego, CA, Aug 03–04, (2007)Google Scholar
  13. 13.
    Barbič, J., James, D.L.: Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. (SIGGRAPH 2005) 24(3), 982–990 (2005)Google Scholar
  14. 14.
    Barrault, M., Maday, Y., Nguyen, N., Patera, A.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. 339(9), 667–672 (2004). doi: 10.1016/j.crma.2004.08.006 MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Bellotti, G.: Transient response of harbours to long waves under resonance conditions. Coast. Eng. 54, 680–693 (2007)CrossRefGoogle Scholar
  16. 16.
    Bird, R.B., Curtiss, C.F., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, vol. 2. Wiley, New York (1987)Google Scholar
  17. 17.
    Bognet, B., Bordeu, F., Chinesta, F., Leygue, A., Poitou, A.: Advanced simulation of models defined in plate geometries: 3d solutions with 2d computational complexity. Comput. Methods Appl. Mech. Eng. 201–204, 1–12 (2012). doi: 10.1016/j.cma.2011.08.025.
  18. 18.
    Bro-Nielsen, M., Cotin, S.: Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput. Graph. Forum 15(3), 57–66 (1996)CrossRefGoogle Scholar
  19. 19.
    Cancès, E., Defranceschi, M., Kutzelnigg, W., Bris, C.L., Maday, Y.: Computational quantum chemistry: a primer. In: Ciarlet, Ph., Le Bris, C. (eds) Handbook of Numerical Analysis, vol. X, special volume: computational chemistry, pp. 3–270. North-Holland (2003)Google Scholar
  20. 20.
    Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32, 2737–2764 (2010). doi: 10.1137/090766498 MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Chinesta, F., Ammar, A., Cueto, E.: Proper generalized decomposition of multiscale models. Int. J. Numer. Methods Eng. 83(8–9), 1114–1132 (2010). doi: 10.1002/nme.2794 zbMATHCrossRefGoogle Scholar
  22. 22.
    Chinesta, F., Ammar, A., Cueto, E.: Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch. Comput. Methods Eng. 17, 327–350 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Chinesta, F., Ammar, A., Cueto, E.: Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch. Comput. Methods Eng. 17, 327–350 (2010). doi: 10.1007/s11831-010-9049-y MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Chinesta, F., Cueto, E.: PGD-Based Modeling of Materials, Structures and Processes. Springer International Publishing, Switzerland (2014)CrossRefGoogle Scholar
  25. 25.
    Chinesta, F., Ladeveze, P., Cueto, E.: A short review on model order reduction based on proper generalized decomposition. Arch. Comput. Methods Eng. 18, 395–404 (2011). doi: 10.1007/s11831-011-9064-7 CrossRefGoogle Scholar
  26. 26.
    Chinesta, F., Leygue, A., Bordeu, F., Aguado, J., Cueto, E., Gonzalez, D., Alfaro, I., Ammar, A., Huerta, A.: PGD-based computational vademecum for efficient design, optimization and control. Arch. Comput. Methods Eng. 20(1), 31–59 (2013). doi: 10.1007/s11831-013-9080-x MathSciNetCrossRefGoogle Scholar
  27. 27.
    Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. In: Hagen, H. (ed.) IEEE Transactions on Visualization and Computer Graphics, vol. 5, issue 1, pp. 62–73. IEEE Computer Society (1999).,
  28. 28.
    Courtecuisse, H., Jung, H., Allard, J., Duriez, C., Lee, D.Y., Cotin, S.: GPU-based real-time soft tissue deformation with cutting and haptic feedback. Prog. Biophys. Mol. Biol. 103(2–3), 159–168 (2010). doi: 10.1016/j.pbiomolbio.2010.09.016. (Special issue on biomechanical modelling of soft tissue motion)
  29. 29.
    Delingette, H., Ayache, N.: Soft tissue modeling for surgery simulation. In: Ayache, N. (ed.) Computational Models for the Human Body. Handbook of Numerical Analysis (Ciarlet, P. ed.), pp. 453–550. Elsevier, Amsterdam (2004)Google Scholar
  30. 30.
    Delingette, H., Ayache, N.: Hepatic surgery simulation. Commun. ACM 48(2), 31–36 (2005). doi: 10.1145/1042091.1042116 CrossRefGoogle Scholar
  31. 31.
    Doswell, J.T.: Augmented learning: context-aware mobile augmented reality architecture for learning. In: Proceedings of the Sixth IEEE International Conference on Advanced Learning Technologies, ICALT ’06, pp. 1182–1183. IEEE Computer Society, Washington, DC, USA (2006).
  32. 32.
    Fung, Y.C.: Biomechanics. Mechanical Properties of Living Tissues. Springer, Berlin (1993)Google Scholar
  33. 33.
    Ghnatios, C., Chinesta, F., Cueto, E., Leygue, A., Poitou, A., Breitkopf, P., Villon, P.: Methodological approach to efficient modeling and optimization of thermal processes taking place in a die: application to pultrusion. Compos. Part A Appl. Sci. Manuf. 42(9), 1169–1178 (2011). doi: 10.1016/j.compositesa.2011.05.001.
  34. 34.
    Ghnatios, C., Masson, F., Huerta, A., Leygue, A., Cueto, E., Chinesta, F.: Proper generalized decomposition based dynamic data-driven control of thermal processes. Comput. Methods Appl. Mech. Eng. 213–216, 29–41 (2012). doi: 10.1016/j.cma.2011.11.018.
  35. 35.
    Gonzalez, D., Masson, F., Poulhaon, F., Cueto, E., Chinesta, F.: Proper generalized decomposition based dynamic data driven inverse identification. Math. Comput. Simul. 82, 1677–1695 (2012)MathSciNetCrossRefGoogle Scholar
  36. 36.
    González, D., Ammar, A., Chinesta, F., Cueto, E.: Recent advances on the use of separated representations. Int. J. Numer. Methods Eng. 81(5), 637–659 (2010). doi: 10.1002/nme.2710 MathSciNetzbMATHGoogle Scholar
  37. 37.
    Öttinger, H.C.: Stochastic Processes in Polymeric Fluids. Springer, Berlin (1996)Google Scholar
  38. 38.
    Hegland, M., Burden, C., Santoso, L., MacNamara, S., Boothm, H.: A solver for the stochastic master equation applied to gene regulatory networks. J. Comput. Appl. Math. 205, 708–724 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Heyberger, C., Boucard, P.A., Néron, D.: Multiparametric analysis within the proper generalized decomposition framework. Comput. Mech. 49, 277–289 (2012). doi: 10.1007/s00466-011-0646-x zbMATHCrossRefGoogle Scholar
  40. 40.
    Inwood, M., Ahmad, J.: Development of instructional, interactive, multimedia anatomy dissection software: a student-led initiative. Clin. Anat. 18(8), 613–617 (2005). doi: 10.1002/ca.20140 CrossRefGoogle Scholar
  41. 41.
    Karhunen, K.: Uber lineare methoden in der wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fennicae Ser. Al. Math. Phys. 37, 1–79 (1946)Google Scholar
  42. 42.
    Ketelhut, D.J.: Augmented learning: research and design of mobile educational games a review. J. Sci. Educ. Technol. 19(2), 212–214 (2010)CrossRefGoogle Scholar
  43. 43.
    Klopfer, E., Squire, K.: Environmental detectives—the development of an augmented reality platform for environmental simulations. Educ. Technol. Res. Dev. 56(2), 203–228 (2008). doi: 10.1007/s11423-007-9037-6 CrossRefGoogle Scholar
  44. 44.
    Klopfer, E., Yoon, S., Rivas, L.: Comparative analysis of palm and wearable computers for participatory simulations. J. Comput. Assist. Learn. 20(5), 347–359 (2004). doi: 10.1111/j.1365-2729.2004.00094.x CrossRefGoogle Scholar
  45. 45.
    Koh, C., Tan, H.S., Tan, K.C., Fang, L., Fong, F.M., Kan, D., Lye, S.L., Wee, M.L.: Investigating the effect of 3D simulation-based learning on the motivation and performance of engineering students. J. Eng. Educ. 99(3), 237–251 (2010)CrossRefGoogle Scholar
  46. 46.
    Kopfler, E.: Augmented Learning. MIT press, Cambridge (2008)Google Scholar
  47. 47.
    Ladeveze, P.: Nonlinear Computational Structural Mechanics. Springer, New York (1999)zbMATHCrossRefGoogle Scholar
  48. 48.
    Ladeveze, P., Chamoin, L.: On the verification of model reduction methods based on the proper generalized decomposition. Comput. Methods Appl. Mech. Eng. 200(23–24), 2032–2047 (2011). doi: 10.1016/j.cma.2011.02.019 MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Ladeveze, P., Passieux, J.C., Neron, D.: The latin multiscale computational method and the proper generalized decomposition. Comput. Methods Appl. Mech. Eng. 199(21–22), 1287–1296 (2010). doi: 10.1016/j.cma.2009.06.023.
  50. 50.
    Laughlin, R.B., Pines, D.: The theory of everything. Proc. Natl. Acad. Sci. 97(1), 28–31 (2000)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Le Bris, C., Lelièvre, T., Maday, Y.: Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations. Constr. Approx. 30, 621–651 (2009). doi: 10.1007/s00365-009-9071-1 MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Loève, M.M.: Probability Theory. The University Series in Higher Mathematics, 3rd ed. Van Nostrand, Princeton (1963)Google Scholar
  53. 53.
    Lorenz, E.N.: Empirical Orthogonal Functions and Statistical Weather Prediction. MIT, Departement of Meteorology, Scientific Report Number 1, Statistical Forecasting Project (1956)Google Scholar
  54. 54.
    Nguyen, N.C., Patera, A.T., Peraire, J.: A ‘best points’ interpolation method for efficient approximation of parametrized functions. Int. J. Numer. Methods Eng. 73(4), 521–543 (2008). doi: 10.1002/nme.2086 MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Niroomandi, S., Alfaro, I., Cueto, E., Chinesta, F.: Real-time deformable models of non-linear tissues by model reduction techniques. Comput. Methods Progr. Biomed. 91(3), 223–231 (2008). doi: 10.1016/j.cmpb.2008.04.008.
  56. 56.
    Niroomandi, S., Alfaro, I., Cueto, E., Chinesta, F.: Model order reduction for hyperelastic materials. Int. J. Numer. Methods Eng. 81(9), 1180–1206 (2010). doi: 10.1002/nme.2733 MathSciNetzbMATHGoogle Scholar
  57. 57.
    Niroomandi, S., Alfaro, I., Cueto, E., Chinesta, F.: Accounting for large deformations in real-time simulations of soft tissues based on reduced-order models. Comput. Methods Progr. Biomed. 105(1), 1–12 (2012). doi: 10.1016/j.cmpb.2010.06.012.
  58. 58.
    Niroomandi, S., González, D., Alfaro, I., Bordeu, F., Leygue, A., Cueto, E., Chinesta, F.: Real-time simulation of biological soft tissues: a PGD approach. Int. J. Numer. Methods Biomed. Eng. 29(5), 586–600 (2013). doi: 10.1002/cnm.2544 MathSciNetCrossRefGoogle Scholar
  59. 59.
    Nouy, A.: A priori model reduction through Proper generalized decomposition for solving time-dependent partial differential equations. Comput. Methods Appl. Mech. Eng. 199(23–24), 1603–1626 (2010). doi: 10.1016/j.cma.2010.01.009 MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Price, S., Rogers, Y.: Let’s get physical: the learning benefits of interacting in digitally augmented physical spaces. Comput. Educ. 43, 137–151 (2004)CrossRefGoogle Scholar
  61. 61.
    Pruliere, E., Chinesta, F., Ammar, A.: On the deterministic solution of multidimensional parametric models using the proper generalized decomposition. Math. Comput. Simul. 81(4), 791–810 (2010). doi: 10.1016/j.matcom.2010.07.015 MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Quesada, C., Alfaro, I., Gonzalez, D., Cueto, E.: Interactive simulation of a neohookean liver. Accessed 25 Aug 2014
  63. 63.
    Ryckelynck, D., Chinesta, F., Cueto, E.: On the a priori model reduction: overview and recent developments. Arch. Comput. Methods Eng. 12(1), 91–128 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Seitz, A.R., Kim, D., Watanabe, T.: Rewards evoke learning of unconsciously processed visual stimuli in adult humans. Neuron 61(5), 700–707 (2009)CrossRefGoogle Scholar
  65. 65.
    Selwyn, N.: Augmented learning: research and design of mobile educational games. Inf. Commun. Soc. 13(5), 788–790 (2010). doi: 10.1080/13691181003792616 CrossRefGoogle Scholar
  66. 66.
    Squire, K., Klopfer, E.: Augmented reality simulations on handheld computers. J. Learn. Sci. 16(3), 371–413 (2007)CrossRefGoogle Scholar
  67. 67.
    Swaak, J., de Jong, T.: Measuring intuitive knowledge in science: the development of the what-if test. Stud. Educ. Eval. 22(4), 341–362 (1996). doi: 10.1016/0191-491X(96)00019-3.
  68. 68.
    Talbot, D.: Given tablets but no teachers, Ethiopian children teach themselves. (2012)
  69. 69.
    Taylor, Z., Comas, O., Cheng, M., Passenger, J., Hawkes, D., Atkinson, D., Ourselin, S.: On modelling of anisotropic viscoelasticity for soft tissue simulation: numerical solution and GPU execution. Med. Image Anal. 13(2), 234–244 (2009). doi: 10.1016/ (Includes special section on functional imaging and modelling of the heart)
  70. 70.
    Wang, P., Becker, A., Jones, I., Glover, A., Benford, S., Greenhalgh, C., Vloeberghs, M.: Virtual reality simulation of surgery with haptic feedback based on the boundary element method. Comput. Struct. 85(7–8), 331–339 (2007). doi: 10.1016/j.compstruc.2006.11.021.

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Aragón Institute of Engineering Research (I3A)Universidad de ZaragozaZaragozaSpain
  2. 2.Laboratori de Calcul Numeric (LaCaN), Dep. Matematica Aplicada IIIUniversitat Politecnica de CatalunyaBarcelonaSpain
  3. 3.Zienkiewicz Centre for Computational Engineering, College of EngineeringSwansea UniversitySwanseaUK
  4. 4.GEM, UMR CNRS-Centrale Nantes, Institut Universitaire de FranceNantes Cedex 3France

Personalised recommendations