The Visual Computer

, Volume 31, Issue 6–8, pp 1011–1021 | Cite as

Simplification of meshes with digitized radiance

  • Kenneth Vanhoey
  • Basile Sauvage
  • Pierre Kraemer
  • Frédéric Larue
  • Jean-Michel Dischler
Original Article

Abstract

View-dependent surface color of virtual objects can be represented by outgoing radiance of the surface. In this paper we tackle the processing of outgoing radiance stored as a vertex attribute of triangle meshes. Data resulting from an acquisition process can be very large and computationally intensive to render. We show that when reducing the global memory footprint of such acquired objects, smartly reducing the spatial resolution is an effective strategy for overall appearance preservation. Whereas state-of-the-art simplification processes only consider scalar or vectorial attributes, we conversely consider radiance functions defined on the surface for which we derive a metric. For this purpose, several tools are introduced like coherent radiance function interpolation, gradient computation, and distance measurements. Both synthetic and acquired examples illustrate the benefit and the relevance of this radiance-aware simplification process.

Keywords

Digitized artifacts Surface light field Radiance  Mesh simplification Rendering 

Supplementary material

371_2015_1124_MOESM1_ESM.pdf (2.7 mb)
Supplementary material 1 (pdf 2787 KB)

Supplementary material 2 (mpg 160630 KB)

371_2015_1124_MOESM3_ESM.pdf (16.8 mb)
Supplementary material 3 (pdf 17238 KB)

References

  1. 1.
    Cabral, B., Olano, M., Nemec, P.: Reflection space image based rendering. In: Proceedings of SIGGRAPH ’99, pp. 165–170. ACM Press, New York (1999). doi:10.1145/311535.311553
  2. 2.
    Chen, W.C., Bouguet, J.Y., Chu, M.H., Grzeszczuk, R.: Light field mapping: efficient representation and hardware rendering of surface light fields. In: Proceedings of the 29th annual conference on computer graphics and interactive techniques, SIGGRAPH ’02, pp. 447–456. ACM, New York (2002). doi:10.1145/566570.566601
  3. 3.
    Choi, H., Kim, H., Lee, K.: An improved mesh simplification method using additional attributes with optimal positioning. Int. J. Adv. Manuf. Technol. 50(1–4), 235–252 (2010). doi:10.1007/s00170-009-2484-y CrossRefGoogle Scholar
  4. 4.
    Cohen, J., Olano, M., Manocha, D.: Appearance-preserving simplification. In: Proceedings of SIGGRAPH ’98, pp. 115–122. ACM Press, New York (1998). doi:10.1145/280814.280832
  5. 5.
    Coombe, G., Hantak, C., Lastra, A., Grzeszczuk, R.: Online construction of surface light fields. In: Proceedings of the Sixteenth Eurographics Conference on Rendering, EGSR’05, pp. 83–90 (2005). doi:10.2312/EGWR/EGSR05/083-090
  6. 6.
    Do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Upper Saddle River (1976)Google Scholar
  7. 7.
    Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of SIGGRAPH ’97, pp. 209–216. ACM Press, New York (1997). doi:10.1145/258734.258849
  8. 8.
    Garland, M., Heckbert, P.S.: Simplifying surfaces with color and texture using quadric error metrics. In: Proceedings of the Conference on Visualization ’98. VIS ’98, pp. 263–269. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  9. 9.
    González, C., Castelló, P., Chover, M.: A texture-based metric extension for simplification methods. In: Proceedings of the Second International Conference on Computer Graphics Theory and Applications (GRAPP), pp. 69–76 (2007)Google Scholar
  10. 10.
    Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Proceedings of SIGGRAPH ’96, pp. 43–54. ACM Press, New York (1996). doi:10.1145/237170.237200
  11. 11.
    Hoppe, H.: Progressive meshes. In: Proceedings of SIGGRAPH ’96, pp. 99–108. ACM Press, New York (1996). doi:10.1145/237170.237216
  12. 12.
    Hoppe, H.: New quadric metric for simplifying meshes with appearance attributes. In: Proceedings of the 10th IEEE Visualization 1999 Conference (VIS ’99), VISUALIZATION ’99, pp. 59–66. IEEE Computer Society, Washington (1999)Google Scholar
  13. 13.
    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the fourth Eurographics symposium on Geometry processing, SGP ’06, pp. 61–70 (2006)Google Scholar
  14. 14.
    Kim, C., Zimmer, H., Pritch, Y., Sorkine-Hornung, A., Gross, M.: Scene reconstruction from high spatio-angular resolution light fields. ACM Trans. Gr. 32(4), 73:1–73:12 (2013). doi:10.1145/2461912.2461926 Google Scholar
  15. 15.
    Kim, H.S., Choi, H.K., Lee, K.H.: Mesh simplification with vertex color. In: Proceedings of the 5th international conference on Advances in geometric modeling and processing. GMP’08, pp. 258–271. Springer-Verlag, Berlin, Heidelberg (2008)Google Scholar
  16. 16.
    Kim, H.S., Choi, H.K., Lee, K.H.: Mesh simplification with vertex color. In: Proceedings of the 5th International Conference on Advances in Geometric Modeling and Processing, GMP’08, pp. 258–271. Springer, Berlin (2008)Google Scholar
  17. 17.
    Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of SIGGRAPH ’96, pp. 31–42. ACM Press, New York (1996). doi:10.1145/237170.237199
  18. 18.
    MacRobert, T.M.: Spherical Harmonics: an Elementary Treatise on Harmonic Functions, with Applications. Dover Publications, New York (1948)Google Scholar
  19. 19.
    Malzbender, T., Gelb, D., Wolters, H.: Polynomial texture maps. In: Proceedings of SIGGRAPH ’01, pp. 519–528. ACM Press, New York (2001). doi:10.1145/383259.383320
  20. 20.
    Nishino, K., Sato, Y., Ikeuchi, K.: Eigen-texture method: appearance compression and synthesis based on a 3D model. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1257–1265 (2001). doi:10.1109/34.969116 CrossRefGoogle Scholar
  21. 21.
    Ray, N., Nivoliers, V., Lefebvre, S., Lévy, B.: Invisible seams. In: Proceedings of the 21st Eurographics Conference on Rendering, EGSR’10, pp. 1489–1496. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2010). doi:10.1111/j.1467-8659.2010.01746.x
  22. 22.
    Rusinkiewicz, S.: A new change of variables for efficient BRDF representation. In: Drettakis, G., Max, N. (eds.) Rendering Techniques ’98, Eurographics, pp. 11–22. Springer, Vienna (1998). doi:10.1007/978-3-7091-6453-2_2
  23. 23.
    Schröder, P., Sweldens, W.: Spherical wavelets: efficiently representing functions on the sphere. In: Proceedings of SIGGRAPH ’95, pp. 161–172. ACM Press, New York (1995). doi:10.1145/218380.218439
  24. 24.
    Vanhoey, K., Sauvage, B., Génevaux, O., Larue, F., Dischler, J.M.: Robust fitting on poorly sampled data for surface light field rendering and image relighting. Comput. Gr. Forum 32(6), 101–112 (2013). doi:10.1111/cgf.12073 CrossRefGoogle Scholar
  25. 25.
    Wood, D.N., Azuma, D.I., Aldinger, K., Curless, B., Duchamp, T., Salesin, D.H., Stuetzle, W.: Surface light fields for 3D photography. In: Proceedings of SIGGRAPH ’00, pp. 287–296. ACM Press, New York (2000). doi:10.1145/344779.344925
  26. 26.
    Wu, H., Dorsey, J., Rushmeier, H.: A sparse parametric mixture model for BTF compression: editing and rendering. Comput. Gr. Forum 30(2), 465–473 (2011). doi:10.1111/j.1467-8659.2011.01890.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kenneth Vanhoey
    • 1
    • 2
  • Basile Sauvage
    • 1
  • Pierre Kraemer
    • 1
  • Frédéric Larue
    • 1
  • Jean-Michel Dischler
    • 1
  1. 1.ICubeUniversité de Strasbourg, CNRSStrasbourgFrance
  2. 2.InriaSophia-AntipolisFrance

Personalised recommendations