The Visual Computer

, Volume 31, Issue 6–8, pp 831–841 | Cite as

Virtual cutting of deformable objects based on efficient topological operations

  • Christoph J. Paulus
  • Lionel Untereiner
  • Hadrien Courtecuisse
  • Stéphane Cotin
  • David Cazier
Original Article

Abstract

Virtual cutting of deformable objects is at the core of many applications in interactive simulation and especially in computational medicine. The ability to simulate surgical cuts, dissection, soft tissue tearing or micro-fractures is essential for augmenting the capabilities of existing or future simulation systems. To support such features, we combine a new remeshing algorithm with a fast finite element approach. The proposed method is generic enough to support a large variety of applications. We show the benefits of our approach evaluating the impact of cuts on the number of nodes and the numerical quality of the mesh. These points are crucial to ensure accurate and stable real-time simulations.

Keywords

Real-time Simulation Virtual reality Topological changes Cutting and tearing  Deformable models  Medical applications 

References

  1. 1.
    Bey, J.: Tetrahedral grid refinement. Computing 55(4), 355–378 (1995)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bielser, D., Glardon, P., Teschner, M., Gross, M.H.: A state machine for real-time cutting of tetrahedral meshes. Graphical Models 66(6), 398–417 (2004)MATHCrossRefGoogle Scholar
  3. 3.
    Bielser, D., Maiwald, V.A., Gross, M.H.: Interactive cuts through 3-dimensional soft tissue. Computer Graphics Forum 18(3), 31–38 (1999)CrossRefGoogle Scholar
  4. 4.
    Burkhart, D., Hamann, B., Umlauf, G.: Adaptive and feature-preserving subdivision for high-quality tetrahedral meshes. Computer Graphics Forum 29(1), 117–127 (2010)CrossRefGoogle Scholar
  5. 5.
    Chentanez, N., Alterovitz, R., Ritchie, D., Cho, L., Hauser, K.K., Goldberg, K., Shewchuk, J.R., O’Brien, J.F.: Interactive simulation of surgical needle insertion and steering. ACM Trans. Graph. 28(3), 88:1–88:10 (2009)CrossRefGoogle Scholar
  6. 6.
    Cotin, S., Delingette, H., Ayache, N.: A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. The Visual Computer 16(8), 437–452 (2000)MATHCrossRefGoogle Scholar
  7. 7.
    Courtecuisse, H., Allard, J., Kerfriden, P., Bordas, S.P.A., Cotin, S., Duriez, C.: Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med. Image Anal. 18(2), 394–410 (2014)CrossRefGoogle Scholar
  8. 8.
    Dick, C., Georgii, J., Westermann, R.: A hexahedral multigrid approach for simulating cuts in deformable objects. Visual. Comp. Graph. IEEE Trans. 17(11), 1663–1675 (2011)CrossRefGoogle Scholar
  9. 9.
    Faure, F., Duriez, C., Delingette, H., Allard, J., Gilles, B., Marchesseau, S., Talbot, H., Courtecuisse, H., Bousquet, G., Peterlik, I., et al.: Sofa: A multi-model framework for interactive physical simulation. In: Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, pp. 283–321. Springer, Berlin Heidelberg (2012)Google Scholar
  10. 10.
    Felippa, C., Haugen, B.: A unified formulation of small-strain corotational finite elements: I. theory. Comp. Methods Appl. Mech. Eng. 194(21), 2285–2335 (2005)MATHCrossRefGoogle Scholar
  11. 11.
    Ganovelli, F., Cignoni, P., Montani, C., Scopigno, R.: A multiresolution model for soft objects supporting interactive cuts and lacerations. Comp. Graph. Forum 19(3), 271–281 (2000)CrossRefGoogle Scholar
  12. 12.
    Hackbusch, W., Sauter, S.: Composite finite elements for the approximation of pdes on domains with complicated micro-structures. Numerische Mathematik 75(4), 447–472 (1997)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Kohn, L.T., Corrigan, J.M., Donaldson, M.S., et al.: To err is human: building a safer health system, vol. 627. National Academies Press, USA (2000)Google Scholar
  14. 14.
    Koschier, D., Lipponer, S., Bender, J.: Adaptive tetrahedral meshes for brittle fracture simulation. In: Proceedings of the 2014 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association (2014)Google Scholar
  15. 15.
    Kraemer, P., Untereiner, L., Jund, T., Thery, S., Cazier, D.: CGoGN: N-dimensional meshes with combinatorial maps. In: 22nd International Meshing Roundtable, pp. 485–503. Switzerland (2013)Google Scholar
  16. 16.
    Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for changing mesh topology during simulation. In: ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05. ACM, New York, NY, USA (2005)Google Scholar
  17. 17.
    Mor, A., Kanade, T.: Modifying soft tissue models: Progressive cutting with minimal new element creation. In: Delp, S., DiGoia, A., Jaramaz, B. (eds.) Medical Image Computing and Computer-Assisted Intervention MICCAI 2000, Lecture Notes in Computer Science, vol. 1935, pp. 598–607. Springer, Berlin Heidelberg (2000)Google Scholar
  18. 18.
    Nienhuys, H.W., Frank van der Stappen, A.: A surgery simulation supporting cuts and finite element deformation. In: Niessen, W., Viergever, M. (eds.) Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2001, Lecture Notes in Computer Science, vol. 2208, pp. 145–152. Springer, Berlin Heidelberg (2001)Google Scholar
  19. 19.
    O’Brien, J.F., Hodgins, J.K.: Graphical modeling and animation of brittle fracture. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’99, pp. 137–146. ACM Press/Addison-Wesley Publishing Co., New York (1999)Google Scholar
  20. 20.
    Payan, Y.: Soft tissue biomechanical modeling for computer assisted surgery, vol. 11. Springer, Berlin Heidelberg (2012)Google Scholar
  21. 21.
    Rivara, M.C.: Local modification of meshes for adaptive and/or multigrid finite-element methods. J. Comput. Appl. Math. 36(1), 79–89 (1991). Special Issue on Adaptive MethodsMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Sauter, S., Warnke, R.: Composite finite elements for elliptic boundary value problems with discontinuous coefficients. Computing 77(1), 29–55 (2006)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Schaefer, S., Hakenberg, J.P., Warren, J.: Smooth subdivision of tetrahedral meshes. In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on geometry processing, SGP ’04, pp. 147–154. ACM, New York (2004)Google Scholar
  24. 24.
    Sifakis, E., Der, K.G., Fedkiw, R.: Arbitrary cutting of deformable tetrahedralized objects. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’07, pp. 73–80. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2007). http://dl.acm.org/citation.cfm?id=1272690.1272701
  25. 25.
    Stanculescu, L., Chaine, R., Cani, M.P., Singh, K.: Sculpting multi-dimensional nested structures. Comp. Graph. 37(6), 753–763 (2013)CrossRefGoogle Scholar
  26. 26.
    Steinemann, D., Harders, M., Gross, M., Szekely, G.: Hybrid cutting of deformable solids. In: Virtual Reality Conference, 2006, 35–42 (2006)Google Scholar
  27. 27.
    Wu, J., Dick, C., Westermann, R.: Interactive high-resolution boundary surfaces for deformable bodies with changing topology. In: Proceedings of 8th Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS) 2011, pp. 29–38 (2011)Google Scholar
  28. 28.
    Wu, J., Westermann, R., Dick, C.: Physically-based simulation of cuts in deformable bodies: A survey. In: Eurographics 2014 State-of-the-Art Report, pp. 1–19. Eurographics Association, Strasbourg, France (2014)Google Scholar
  29. 29.
    Wu, J., Westermann, R., Dick, C.: Real-time haptic cutting of high resolution soft tissues. Studies Health Technol. Inform. (Proc. Medicine Meets Virtual Reality 2014) 196, 469–475 (2014). Published by IOS PressGoogle Scholar
  30. 30.
    Zhang, Y., Hughes, T., Bajaj, C.: An automatic 3d mesh generation method for domains with multiple materials. Comp. Methods Appl. Mech. Eng. 199(5), 405–415 (2010)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christoph J. Paulus
    • 1
    • 2
    • 3
  • Lionel Untereiner
    • 1
    • 2
    • 3
  • Hadrien Courtecuisse
    • 2
    • 3
  • Stéphane Cotin
    • 1
  • David Cazier
    • 2
    • 3
  1. 1.Inria Nancy Grand EstVillers-lès-NancyFrance
  2. 2.Université de Strasbourg, ICube LabIllkirchFrance
  3. 3.CNRS, ICube LabIllkirchFrance

Personalised recommendations