The Visual Computer

, Volume 31, Issue 6–8, pp 959–965 | Cite as

Incompressibility-preserving deformation for fluid flows using vector potentials

  • Syuhei Sato
  • Yoshinori Dobashi
  • Yonghao Yue
  • Kei Iwasaki
  • Tomoyuki Nishita
Original Article

Abstract

Physically based fluid simulations usually require expensive computation cost for creating realistic animations. We present a technique that allows the user to create various fluid animations from an input fluid animation sequence, without the need for repeatedly performing simulations. Our system allows the user to deform the flow field in order to edit the overall fluid behavior. In order to maintain plausible physical behavior, we ensure the incompressibility to guarantee the mass conservation. We use a vector potential for representing the flow fields to realize such incompressibility-preserving deformations. Our method first computes (time-varying) vector potentials from the input velocity field sequence. Then, the user deforms the vector potential, and the system computes the deformed velocity field by taking the curl operator on the vector potential. The incompressibility is thus obtained by construction. We show various examples to demonstrate the usefulness of our method.

Keywords

Flow deformation Incompressibility  Vector potential 

Supplementary material

371_2015_1122_MOESM1_ESM

References

  1. 1.
    Bhatia, H., Norgard, G., Pascucci, V., Bremer, P.: The Helmholtz–Hodge decomposition—a survey. IEEE Trans. Vis. Comput. Graph. 19(8), 1386–1404 (2013)CrossRefGoogle Scholar
  2. 2.
    Bridson, R.: Fluid Simulation for Computer Graphics. AK Peters (2008)Google Scholar
  3. 3.
    Cottet, G.H., Koumoutsakos, P.D.: Vortex Methods: Theory and Practice. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  4. 4.
    Fattal, R., Lischinski, D.: Target-driven smoke animation. ACM Trans. Graph. 23(3), 439–446 (2004)CrossRefGoogle Scholar
  5. 5.
    Fedkiw, R., Stam, J., Jansen, H.W.: Visual simulation of smoke. In: Proceedings of ACM SIGGRAPH 2001, pp. 15–22 (2001)Google Scholar
  6. 6.
    Feldman, B.E., O’Brien, J.F., Arikan, O.: Animating suspended particle explosions. In: Proceedings of ACM SIGGRAPH 2003, pp. 708–715 (2003)Google Scholar
  7. 7.
    Foster, N., Fedkiw, R.: Practical animation of liquids. In: Proceedings of ACM SIGGRAPH 2001, pp. 23–30 (2001)Google Scholar
  8. 8.
    Fuller, A.R., Krishnan, H., Mahrous, K., Hamann, B., Joy, K.I.: Real-time procedural volumetric fire. In: Proceeding of the 2007 Symposium on Interactive 3D Graphics and Games, pp. 175–180 (2007)Google Scholar
  9. 9.
    Gamito, M.N., Lopes, P.F., Gomes, M.R.: Two-dimensional simulation of gaseous phenomena using vortex particles. In: Proceedings of the 6th Eurographics Workshop on Computer Animation and Simulation, pp. 3–15. Springer, New York (1995)Google Scholar
  10. 10.
    Hong, W., House, D.H., Keyser, J.: Adaptive particles for incompressible fluid simulation. Vis. Comput. 24(7–9), 535–543 (2008)MATHCrossRefGoogle Scholar
  11. 11.
    Jakob, W.: Mitsuba Renderer (2010). http://www.mitsuba-renderer.org
  12. 12.
    Kim, T., Delaney, J.: Subspace fluid re-simulation. ACM Trans. Graph. 32(4), article 62 (2013)Google Scholar
  13. 13.
    Kim, Y., Machiraju, R., Thompson, D.: Path-based control of smoke simulations. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 33–42 (2006)Google Scholar
  14. 14.
    Lamorlette, A., Foster, N.: Structural modeling of flames for a production environment. ACM Trans. Graph. 21(3), 729–735 (2002)CrossRefGoogle Scholar
  15. 15.
    Nguyen, D.Q., Fedkiw, R., Jensen, H.W.: Physically based modeling and animation of fire. ACM Trans. Graph. 21(3), 721–728 (2002)CrossRefGoogle Scholar
  16. 16.
    Park, S.I., Kim, M.J.: Vortex fluid for gaseous phenomena. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 261–270 (2005)Google Scholar
  17. 17.
    Pighin, F., Cohen, J., Shah, M.: Modeling and editing flows using advected radial basis functions. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 223–232 (2004)Google Scholar
  18. 18.
    Sato, S., Dobashi, Y., Iwasaki, K., Yamamoto, T., Nishita, T.: Deformation of 2D flow fields using stream functions. In: Proceedings of SIGGRAPH Asia 2014 Technical Briefs, article 4 (2014)Google Scholar
  19. 19.
    Schaefer, S., McPhail, T., Warren, J.: Image deformation using moving least squares. ACM Trans. Graph. 25(3), 533–540 (2006)CrossRefGoogle Scholar
  20. 20.
    Shi, L., Yu, Y.: Taming liquids for rapidly changing targets. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 229–236 (2005)Google Scholar
  21. 21.
    Stam, J.: Stable fluids. In: Proceedings of ACM SIGGRAPH 1999, Annual Conference Series, pp. 121–128 (1999)Google Scholar
  22. 22.
    Tong, Y., Lombeyda, S., Hirani, A.N., Desbrun, M.: Discrete multiscale vector field decomposition. ACM Trans. Graph. 22(3), 445–452 (2003)CrossRefGoogle Scholar
  23. 23.
    Treuille, A., Lewis, A., Popovic, Z.: Model reduction for real-time fluids. ACM Trans. Graph. 25(3), 826–834 (2006)CrossRefGoogle Scholar
  24. 24.
    Treuille, A., McNamara, A., Popovic, Z., Stam, J.: Keyframe control of smoke simulations. ACM Trans. Graph. 22(3), 716–723 (2003)CrossRefGoogle Scholar
  25. 25.
    Wicke, M., Stanton, M., Treuille, A.: Modular bases for fluid dynamics. ACM Trans. Graph. 28(3), article 39 (2009)Google Scholar
  26. 26.
    Yaeger, L., Upson, C., Myers, R.: Combining physical and visual simulation–creation of the planet Jupiter for the film “2010”. In: Proceedings of ACM SIGGRAPH ’86, pp. 85–93 (1986)Google Scholar
  27. 27.
    Zhang, X., Bridson, R.: A PPPM fast summation method for fluids and beyond. ACM Trans. Graph. 33(6), 206:1–206:11 (2014). doi:10.1145/2661229.2661261 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Syuhei Sato
    • 1
  • Yoshinori Dobashi
    • 2
  • Yonghao Yue
    • 3
  • Kei Iwasaki
    • 4
  • Tomoyuki Nishita
    • 5
  1. 1.UEI ResearchTokyoJapan
  2. 2.UEI Research, JST CREST, Hokkaido UniversitySapporoJapan
  3. 3.Columbia University New YorkUSA
  4. 4.UEI ResearchWakayama UniversityWakayamaJapan
  5. 5.UEI ResearchHiroshima Shudo UniversityTokyoJapan

Personalised recommendations