The Visual Computer

, Volume 31, Issue 6–8, pp 853–861 | Cite as

A novel simulation framework based on information asymmetry to evaluate evacuation plan

  • Xiaodong Che
  • Yu Niu
  • Bin Shui
  • Jianbo Fu
  • Guangzheng Fei
  • Prashant Goswami
  • Yanci Zhang
Original Article


In this paper, we present a novel framework to simulate the crowd behavior under emergency situations in a confined space with multiple exits. In our work, we take the information asymmetry into consideration, which is used to model the different behaviors presented by pedestrians because of their different knowledge about the environment. We categorize the factors influencing the preferred velocity into two groups, the intrinsic and extrinsic factors, which are unified into a single space called influence space. At the same time, a finite state machine is employed to control the individual behavior. Different strategies are used to compute the preferred velocity in different states, so that our framework can produce the phenomena of decision change. Our experimental results prove that our framework can be employed to analyze the factors influencing the escape time, such as the number and location of exits, the density distribution of the crowd and so on. Thus it can be used to design and evaluate the evacuation plans.


Crowd simulation Information asymmetry Influence space Emergency evacuation 



The work presented in this paper is supported by National Natural Science Foundation of China (Grant No. 61472261) and National Key Technology R&D Program of China (Grant No. 2012BAH62F03).


  1. 1.
    Abdelghany, A., Abdelghany, K., Mahmassani, H., Alhalabi, W.: Modeling framework for optimal evacuation of large-scale crowded pedestrian facilities. Eur. J. Opera. Res. 237(3), 1105–1118 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Augustijn-Beckers, E.W., Flacke, J., Retsios, B.: Investigating the effect of different pre-evacuation behavior and exit choice strategies using agent-based modeling. Proced. Eng. 3, 23–35 (2010)CrossRefGoogle Scholar
  3. 3.
    Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., et al.: Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl. Acad. Sci. 105(4), 1232–1237 (2008)CrossRefGoogle Scholar
  4. 4.
    Bode, N.W., Wagoum, A.U.K., Codling, E.A.: Human responses to multiple sources of directional information in virtual crowd evacuations. J. R. Soc. Interface 11(91), 20130,904 (2014)CrossRefGoogle Scholar
  5. 5.
    Braun, A., Musse, S., de Oliveira, L., Bodmann, B.: Modeling individual behaviors in crowd simulation. In: 16th International Conference on Computer Animation and Social Agents, 2003, pp. 143–148 (2003). doi: 10.1109/CASA.2003.1199317
  6. 6.
    Camillen, F., Caprì, S., Garofalo, C., Ignaccolo, M., Inturri, G., Pluchino, A., Rapisarda, A., Tudisco, S.: Multi agent simulation of pedestrian behavior in closed spatial environments. In: 2009 IEEE Toronto International Conference Science and Technology for Humanity (TIC-STH), pp. 375–380. IEEE (2009)Google Scholar
  7. 7.
    Chen, X., Kwan, M.P., Li, Q., Chen, J.: A model for evacuation risk assessment with consideration of pre-and post-disaster factors. Comput. Environ. Urban Syst. 36(3), 207–217 (2012)CrossRefGoogle Scholar
  8. 8.
    Guy, S.J., Chhugani, J., Curtis, S., Dubey, P., Lin, M., Manocha, D.: Pledestrians: a least-effort approach to crowd simulation. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 119–128. Eurographics Association (2010)Google Scholar
  9. 9.
    Guy, S.J., Lin, M.C., Manocha, D.: Modeling collision avoidance behavior for virtual humans. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 2, vol. 2, pp. 575–582. International Foundation for Autonomous Agents and Multiagent Systems (2010)Google Scholar
  10. 10.
    Hector Jr, L., LIM, M.B., PIANTANAKULCHAI, M.: A review of recent studies on flood evacuation planning. In: Proceedings of the Eastern Asia Society for Transportation Studies, vol. 9 (2013)Google Scholar
  11. 11.
    Johansson, A., Helbing, D., Shukla, P.K.: Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Adv. Complex Syst. 10(supp02), 271–288 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Kamkarian, P., Hexmoor, H.: Crowd evacuation for indoor public spaces using coulomb’s law. Adv. Artif. Intell. 2012, 4 (2012)CrossRefGoogle Scholar
  13. 13.
    Kim, S., Guy, S.J., Hillesland, K., Zafar, B., Gutub, A.A.A., Manocha, D.: Velocity-based modeling of physical interactions in dense crowds. Vis. Comput. (2014). doi: 10.1007/s00371-014-0946-1
  14. 14.
    Kim, S., Guy, S.J., Manocha, D., Lin, M.C.: Interactive simulation of dynamic crowd behaviors using general adaptation syndrome theory. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp. 55–62. ACM (2012)Google Scholar
  15. 15.
    Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate dynamics for dense crowd simulation. In: ACM Transactions on Graphics (TOG), vol. 28, p. 122. ACM (2009)Google Scholar
  16. 16.
    Ninomiya, K., Kapadia, M., Shoulson, A., Garcia, F., Badler, N.: Planning approaches to constraint-aware navigation in dynamic environments. Comput. Anim. Virt. Worlds (2014). doi: 10.1002/cav.1622
  17. 17.
    Papageorgiou, A., Platis, N.: Triangular mesh simplification on the GPU. Vis. Comput. 31, 235–244 (2015)CrossRefGoogle Scholar
  18. 18.
    Patrix, J., Mouaddib, A.I., Gatepaille, S.: Detection of primitive collective behaviours in a crowd panic simulation based on multi-agent approach. Int. J. Swarm Intell. Res. 3(3), 50–65 (2012)CrossRefGoogle Scholar
  19. 19.
    Pelechano, N., Badler, N.I.: Modeling crowd and trained leader behavior during building evacuation. IEEE Comput. Gr. Appl. doi: 10.1109/MCG.2006.133
  20. 20.
    Pelechano, N., Malkawi, A.: Evacuation simulation models: challenges in modeling high rise building evacuation with cellular automata approaches. Autom. Constr. 17(4), 377–385 (2008)CrossRefGoogle Scholar
  21. 21.
    Pettre, J., Laumond, J.P., Thalmann, D.: A navigation graph for real-time crowd animation on multilayered and uneven terrain. In: First International Workshop on Crowd Simulation, vol. 43, p. 194. Citeseer (2005)Google Scholar
  22. 22.
    Pluchino, A., Garofalo, C., Inturri, G., Rapisarda, A., Ignaccolo, M.: Agent-based simulation of pedestrian behaviour in closed spaces: a museum case study. arXiv preprint arXiv:1302.7153 (2013)
  23. 23.
    Sagun, A., Bouchlaghem, D., Anumba, C.J.: Computer simulations vs. building guidance to enhance evacuation performance of buildings during emergency events. Simul. Model. Pract. Theory 19(3), 1007–1019 (2011)Google Scholar
  24. 24.
    Sarmady, S., Haron, F., Talib, A.Z.: A cellular automata model for circular movements of pedestrians during tawaf. Simul. Model. Pract. Theory 19(3), 969–985 (2011)CrossRefGoogle Scholar
  25. 25.
    Shendarkar, A., Vasudevan, K., Lee, S., Son, Y.J.: Crowd simulation for emergency response using bdi agent based on virtual reality. In: Proceedings of the 38th conference on Winter simulation, pp. 545–553. Winter Simulation Conference (2006)Google Scholar
  26. 26.
    Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. In: ACM Transactions on Graphics (TOG), vol. 25, pp. 1160–1168. ACM (2006)Google Scholar
  27. 27.
    Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pp. 1928–1935. IEEE (2008)Google Scholar
  28. 28.
    Vasudevan, K., Son, Y.J.: Concurrent consideration of evacuation safety and productivity in manufacturing facility planning using multi-paradigm simulations. Comput. Ind. Eng. 61(4), 1135–1148 (2011)CrossRefGoogle Scholar
  29. 29.
    Wagner, N., Agrawal, V.: An agent-based simulation system for concert venue crowd evacuation modeling in the presence of a fire disaster. Expert Syst. Appl. 41(6), 2807–2815 (2014)CrossRefGoogle Scholar
  30. 30.
    Zhang, L., Wang, J., Shi, Q.: Multi-agent based modeling and simulating for evacuation process in stadium. J. Syst. Sci. Complex. 27(3), 430–444 (2014)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Xiaodong Che
    • 1
  • Yu Niu
    • 1
  • Bin Shui
    • 1
  • Jianbo Fu
    • 1
  • Guangzheng Fei
    • 2
  • Prashant Goswami
    • 3
  • Yanci Zhang
    • 1
  1. 1.Sichuan UniversityChengduChina
  2. 2.Communication University of ChinaBeijingChina
  3. 3.Blekinge Institute of TechnologyKarlskronaSweden

Personalised recommendations