The Visual Computer

, Volume 31, Issue 6–8, pp 1033–1043

Texture advection on discontinuous flows

  • Angel Rodríguez-Cerro
  • Ignacio García-Fernández
  • Rafael J. Martínez-Durá
  • Marta Pla-Castells
Original Article

Abstract

Texture advection techniques, which transport textures using a velocity field, are used to visualize the dynamics of a flow on a triangle mesh. Some flow phenomena lead to velocity fields with discontinuities that cause the deformation of the texture which is not properly controlled by these techniques. We propose a method to detect and visualize discontinuities on a flow, keeping consistent texture advection at both sides of the discontinuity. The method handles the possibility that the discontinuity travels across the domain of the flow with arbitrary velocity, estimating its speed with least-squares approximation. The technique is tested with different sample scenarios and with two avalanche scenes, showing that it can run at interactive rates.

Keywords

Flow visualization Texture advection Discontinuity Computer animation 

Supplementary material

Supplementary material 1 (avi 56643 KB)

References

  1. 1.
    Bargteil, A.W., Goktekin, T.G., O’Brien, J.F., Strain, J.A.: A semi-lagrangian contouring method for fluid simulation. ACM. Trans. Graph. 25(1), 19–38 (2006)CrossRefGoogle Scholar
  2. 2.
    Bargteil, A.W., Sin, F., Michaels, J.E., Goktekin, T.G., O’Brien, J.F.: A texture synthesis method for liquid animations. In: SCA ’06 Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 345–351 (2006)Google Scholar
  3. 3.
    Bouchaud, J.P., Cates, M.E., Ravi-Prakash, J., Edwards, S.F.: A model for the dynamics of sandpile surfaces. J. Phys. Fr. 4, 1383–1410 (1994)Google Scholar
  4. 4.
    Correa, C.D., Hero, R., Ma, K.L.: A comparison of gradient estimation methods for volume rendering on unstructured meshes. IEEE. Trans. Vis. Comput. Graph. 17(3), 305–319 (2011)CrossRefGoogle Scholar
  5. 5.
    Daerr, A.: Dynamical equilibrium of avalanches on a rough plane. Phys. Fluids. 13, 2115–2124 (2001)CrossRefGoogle Scholar
  6. 6.
    Daerr, A., Douady, S.: Two types of avalanche behaviour in granular media. Nature 399, 241–243 (1999)CrossRefGoogle Scholar
  7. 7.
    El Hajjar, J.F., Jolivet, V., Ghazanfarpour, D., Pueyo, X.: A model for real-time on-surface flows. Vis. Comput. 25(2), 87–100 (2009)CrossRefGoogle Scholar
  8. 8.
    Hadeler, K.P., Kuttler, C.: Dynamical models for granular matter. Granul. Matter. 2(1), 9–18 (1999)CrossRefGoogle Scholar
  9. 9.
    Ihmsen, M., Akinci, N., Akinci, G., Teschner, M.: Unified spray, foam and air bubbles for particle-based fluids. Vis. Comput. 28(6–8), 669–677 (2012)CrossRefGoogle Scholar
  10. 10.
    Jobard, B., Erlebacher, G., Hussaini, M.Y.: Lagrangian-eulerian advection for unsteady flow visualization. In: Proceedings of the Conference on Visualization ’01, VIS ’01, pp. 53–60. IEEE Computer Society (2001)Google Scholar
  11. 11.
    Kim, S., Guy, S., Hillesland, K., Zafar, B., Gutub, A.A., Manocha, D.: Velocity-based modeling of physical interactions in dense crowds. Vis. Comput. 1–15 (2014)Google Scholar
  12. 12.
    Kwatra, V., Adalsteinsson, D., Kim, T., Kwatra, N., Carlson, M., Lin, M.C.: Texturing fluids. IEEE. Trans. Vis. Comput. Gr. 13(5), 939–952 (2007)CrossRefGoogle Scholar
  13. 13.
    Laramee, R.S., Hauser, H., Doleisch, H., Vrolijk, B., Post, F.H., Weiskopf, D.: The state of the art in flow visualization: dense and texture-based techniques. Comput. Gr. Forum. 23(2), 203–221 (2004)CrossRefGoogle Scholar
  14. 14.
    Laramee, R.S., Jobard, B., Hauser, H.: Image space based visualization of unsteady flow on surfaces. In: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), p. 18. IEEE Computer Society (2003)Google Scholar
  15. 15.
    Lefebvre, S., Hoppe, H.: Appearance-space texture synthesis. In: Proceedings of the ACM SIGGRAPH 2006 Papers, pp. 541–548 (2006)Google Scholar
  16. 16.
    Lever, J., Komura, T.: Real-time controllable fire using textured forces. Vis. Comput. 28(6–8), 691–700 (2012)CrossRefGoogle Scholar
  17. 17.
    Max, N., Becker, B.: Flow visualization using moving textures (1996)Google Scholar
  18. 18.
    Neyret, F.: Advected textures. In: Proceedings of the ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 147–153 (2003)Google Scholar
  19. 19.
    Onoue, K., Nishita, T.: An interactive deformation system for granular material. Comput. Gr. Forum. 24(1), 51–60 (2005)CrossRefGoogle Scholar
  20. 20.
    Pla-Castells, M., García-Fernandez, I., Martinez-Dura, R.J.: Physically-based interactive sand simulation. In: Eurographics 2008—Short Papers, pp. 21–24 (2008)Google Scholar
  21. 21.
    Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., Fedkiw, R.: Directable photorealistic liquids. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 193–202 (2004)Google Scholar
  22. 22.
    Strikwerda, J.: Finite Difference Schemes and Partial Differential Equations, 2nd edn. SIAM:Society for Industrial and Applied Mathematics (2004)Google Scholar
  23. 23.
    Sumner, R.W., O’Brien, J.F., Hodgins, J.K.: Animating sand, mud and snow. Comput. Gr. Forum. 18(1), 17–26 (1999)Google Scholar
  24. 24.
    Tsuda, Y., Yue, Y., Dobashi, Y., Nishita, T.: Visual simulation of mixed-motion avalanches with interactions between snow layers. Vis. Comput. 26(6–8), 883–891 (2010)CrossRefGoogle Scholar
  25. 25.
    Weiskopf, D., Ertl, T.: A hybrid physical/device-space approach for spatio-temporally coherent interactive texture advection on curved surfaces. In: Proceedings of Graphics Interface 2004, GI ’04, pp. 263–270 (2004)Google Scholar
  26. 26.
    van Wijk, J.J.: Image based flow visualization. ACM. Trans. Graph. 21, 745–754 (2002)Google Scholar
  27. 27.
    Yu, Q., Neyret, F., Bruneton, E., Holzschuch, N.: Scalable real-time animation of rivers. Comput. Gr. Forum. 28(2), 239–248 (2009)CrossRefGoogle Scholar
  28. 28.
    Yu, Q., Neyret, F., Bruneton, E., Holzschuch, N.: Lagrangian texture advection: preserving both spectrum and velocity field. IEEE. Trans. Vis. Comput. Gr. 17(11), 1612–1623 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.LSyM, Universitat de ValenciaValenciaSpain
  2. 2.Departament d’InformaticaUniversitat de ValenciaValenciaSpain
  3. 3.LISITT, Universitat de ValenciaValenciaSpain

Personalised recommendations