The Visual Computer

, Volume 31, Issue 6–8, pp 937–946 | Cite as

Novel adaptive SPH with geometric subdivision for brittle fracture animation of anisotropic materials

  • Chen Li
  • ChangBo Wang
  • Hong Qin
Original Article


In this paper, we articulate a novel particle-centric method to simulate the dynamics of brittle fracture for anisotropic materials. The key motivation of this paper is to develop a new hybrid, particle-based simulation that inherits advantages from both powerful finite element methods and popular mesh-free methods, while overcoming certain disadvantages of both types of methods. Our method stems from two novel aspects: (1) a physical model built upon an improved mechanical framework and the adaptive smoothed particle hydrodynamics (SPH), an improved variant of traditional SPH, which can handle complicated anisotropic elastic behaviors with little extra cost; and (2) a hybrid, adaptive particle system that serves for more accurate fracture modeling with richer details. At the physical level, in order to facilitate better control during the formation of fracture and improve its time performance, we develop a physical framework based on contact mechanics and adopt the stress and energy analysis on the anisotropic SPH numerical integration to pinpoint fracture generation and propagation. At the geometric level, in order to reduce time consumption and enhance accuracy in rigid dynamics and fracture generation, we employ hybrid, fully adaptive particles in the vicinity of fracture regions via geometric subdivision. Our novel approach can facilitate the user to control the generation of cracks with low computational cost and retain high-fidelity crack details during animation. Our comprehensive experiments demonstrate the controllability, effectiveness, and accuracy of our method when simulating various brittle fracture patterns for anisotropic materials.


Brittle fracture Anisotropic material Adaptive tetrahedral subdivision Animation control 



This paper is supported in part by Natural Science Foundation of China (No. 61190120, 61190121, 61190125, and 61272199), National Science Foundation of USA (IIS-0949467, IIS-1047715, and IIS-1049448), National High-tech R&D Program of China (863 Program, No. SS2015AA010504), Innovation Program of Shanghai Municipal Education Commission (No. 12ZZ042), the Specialized Research Fund for Doctoral Program of Higher Education (20130076110008), the open funding project of State Key Laboratory of Virtual Reality Technology and Systems, Beihang University (Grant No. BUAA-VR-15KF-14), and Shanghai Collaborative Center of Trustworthy Software for Internet of Things (No. ZF1213). The authors wish to thank Dr. Feibin Chen for his technical support on mechanics theory. The authors also wish to thank all the anonymous reviewers for their insightful comments that have helped improve this paper’s quality.


  1. 1.
    O’brien, J.F., Hodgins, J.K.: Graphical modeling and animation of brittle fracture. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 137–146. ACM Press/Addison-Wesley Publishing Co., New York (1999)Google Scholar
  2. 2.
    Zheng, C., James, D.L.: Rigid-body fracture sound with precomputed soundbanks. ACM Trans. Gr. (TOG) 29(4), 69 (2010)Google Scholar
  3. 3.
    Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., Guibas, L.J.: Meshless animation of fracturing solids. ACM Trans. Gr. (TOG) 24(3), 957–964 (2005)CrossRefGoogle Scholar
  4. 4.
    Guo, X., Qin, H.: Meshless methods for physics-based modeling and simulation of deformable models. Sci. China Ser. F Inf. Sci. 52(3), 401–417 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Narain, R., Samii, A., O’Brien, J.F.: Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Gr. (TOG) 31(6), 152:1–152:10 (2012)Google Scholar
  6. 6.
    Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In: Proceedings of ACM Siggraph Computer Graphics, vol. 22, pp. 269–278. ACM, New York (1988)Google Scholar
  7. 7.
    Levine, J., Bargteil, A., Corsi, C., Tessendorf, J., Geist, R.: A peridynamic perspective on spring-mass fracture. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 47–55 (2014)Google Scholar
  8. 8.
    Teran, J., Blemker, S., Hing, V., Fedkiw, R.: Finite volume methods for the simulation of skeletal muscle. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 68–74. Eurographics Association (2003)Google Scholar
  9. 9.
    Pfaff, T., Narain, R., de Joya, J.M., O’Brien, J.F.: Adaptive tearing and cracking of thin sheets. ACM Trans. Gr. (TOG) 33(4), 110 (2014)Google Scholar
  10. 10.
    Koschier, D., Lipponer, S., Bender, J.: Adaptive tetrahedral meshes for brittle fracture simulation. In: Proceedings of the 2014 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 57–66. Eurographics Association (2014)Google Scholar
  11. 11.
    Bao, Z., Hong, J.M., Teran, J., Fedkiw, R.: Fracturing rigid materials. IEEE Trans. Vis. Comput. Gr. 13(2), 370–378 (2007)CrossRefGoogle Scholar
  12. 12.
    Hegemann, J., Jiang, C., Schroeder, C., Teran, J.M.: A level set method for ductile fracture. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 193–201. ACM, New York (2013)Google Scholar
  13. 13.
    Bender, J., Müller, M., Otaduy, M.A., Teschner, M., Macklin, M.: A survey on position-based simulation methods in computer graphics. Comput. Gr. Forum 33(6), 228–251 (2014)CrossRefGoogle Scholar
  14. 14.
    Martin, S., Kaufmann, P., Botsch, M., Wicke, M., Gross, M.: Polyhedral finite elements using harmonic basis functions. Comput. Gr. Forum 27(5), 1521–1529 (2008)CrossRefGoogle Scholar
  15. 15.
    Steinemann, D., Otaduy, M.A., Gross, M.: Fast arbitrary splitting of deforming objects. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 63–72. Eurographics Association (2006)Google Scholar
  16. 16.
    Bicknell, G., Gingold, R.: On tidal detonation of stars by massive black holes. Astrophys. J. 273, 749–760 (1983)CrossRefGoogle Scholar
  17. 17.
    Shapiro, P.R., Martel, H., Villumsen, J.V., Owen, J.M.: Adaptive smoothed particle hydrodynamics, with application to cosmology: methodology. Astrophys. J. Suppl. Ser. 103, 269–330 (1996)CrossRefGoogle Scholar
  18. 18.
    Owen, J.M., Villumsen, J.V., Shapiro, P.R., Martel, H.: Adaptive smoothed particle hydrodynamics: methodology II. Astrophys. J. Suppl. Ser. 116(2), 155–209 (1998)CrossRefGoogle Scholar
  19. 19.
    Liu, N., Zhu, F., Li, S., Wang, G.: Anisotropic kernels for meshless elastic solids. In: Proceedings of 12th International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics), pp. 349–356. IEEE, New York (2011)Google Scholar
  20. 20.
    Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for changing mesh topology during simulation. In: Proceedings of ACM SIGGRAPH 2005 Courses, pp. 4–11. ACM, New York (2005)Google Scholar
  21. 21.
    Desbenoit, B., Galin, E., Akkouche, S.: Modeling cracks and fractures. Vis. Comput. 21(8–10), 717–726 (2005)CrossRefGoogle Scholar
  22. 22.
    Müller, M., Chentanez, N., Kim, T.Y.: Real time dynamic fracture with volumetric approximate convex decompositions. ACM Trans. Gr. (TOG) 32(4), 115–124 (2013)Google Scholar
  23. 23.
    Glondu, L., Marchal, M., Dumont, G.: Real-time simulation of brittle fracture using modal analysis. IEEE Trans. Vis. Comput. Gr. 19(2), 201–209 (2013)CrossRefGoogle Scholar
  24. 24.
    Chen, F., Wang, C., Xie, B., Qin, H.: Flexible and rapid animation of brittle fracture using the smoothed particle hydrodynamics formulation. Comput. Anim. Virtual Worlds 24(3–4), 215–224 (2013)CrossRefGoogle Scholar
  25. 25.
    Johnson, K.L., Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)Google Scholar
  26. 26.
    Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., Teschner, M.: Sph fluids in computer graphics. In: Proceedings of Eurographics (State-of-the-Art Report), pp. 21–42. The Eurographics Association (2014)Google Scholar
  27. 27.
    Becker, M., Ihmsen, M., Teschner, M.: Corotated sph for deformable solids. In: Proceedings of NPH, pp. 27–34. Citeseer, Munich (2009)Google Scholar
  28. 28.
    Yu, J., Turk, G.: Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Trans. Gr. (TOG) 32(1), 5:1–5:12 (2013)Google Scholar
  29. 29.
    Gross, D., Seelig, T.: Fracture Mechanics: with an Introduction to Micromechanics. Springer, Berlin (2011)CrossRefGoogle Scholar
  30. 30.
    Estivill-Castro, V.: Why so many clustering algorithms: a position paper. ACM SIGKDD Explor. Newsl. 4(1), 65–75 (2002)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Smith, J., Witkin, A., Baraff, D.: Fast and controllable simulation of the shattering of brittle objects. Comput. Gr. Forum 20(2), 81–91 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Software Engineering InstituteEast China Normal UniversityShanghaiChina
  2. 2.Department of Computer ScienceStony Brook UniversityStony BrookUSA

Personalised recommendations