The Visual Computer

, Volume 31, Issue 6–8, pp 905–914 | Cite as

Virtual ball player

Synthesizing character animation to control a virtual ball from motion data using interaction patterns
  • Jong-In Choi
  • Shin-Jin Kang
  • Chang-Hun Kim
  • Jung Lee
Original Article

Abstract

It is very difficult and tedious work to synthesize an animation in which a character skillfully controls several balls. This is because all the virtual balls need to be synchronized with the motion of the character temporally and spatially as following the laws of physics. Moreover, a skillful actor is needed for capturing the motion. We introduce a simple but interesting method such that anyone can synthesize an animation of skillful ball-handling motion using interaction patterns without any actual ball. Interaction patterns involve regularly repeated human motions to control the virtual ball. We first capture the motion that mimics controlling a ball using various interaction patterns. Then we synthesize the trajectory of a virtual ball by analyzing the captured motion and correct the character motion to be fitted to the synthesized trajectory of a virtual ball. Experiments convincingly show the usefulness of proposed technique by synthesizing various ball-handling animations.

Keywords

Virtual reality Interaction motion Motion capture Motion analysis Physics-based animation 

Supplementary material

Supplementary material 1 (avi 14738 KB)

Supplementary material 2 (wmv 4550 KB)

Supplementary material 3 (wmv 1519 KB)

Supplementary material 4 (wmv 6710 KB)

Supplementary material 5 (wmv 5710 KB)

Supplementary material 6 (wmv 13379 KB)

Supplementary material 7 (wmv 9469 KB)

References

  1. 1.
    Al-Asqhar, R.A., Komura, T., Choi, M.G.: Relationship descriptors for interactive motion adaptation. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 45–53 (2013)Google Scholar
  2. 2.
    Alexa, M.: Differential coordinates for local mesh morphing and deformation. Vis. Comput. 19(2–3), 105–114 (2003)MATHGoogle Scholar
  3. 3.
    Arika, O., Forsyth, D., O’Brien, J.F.: Pushing people around. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 56–66 (2005)Google Scholar
  4. 4.
    Cooper, S., Hertzmann, A., Popovi, Z.: Active learning for real-time motion controllers. ACM Trans. Gr. 26(3), 5 (2007)Google Scholar
  5. 5.
    Ho, E.S.L., Komura, T., Tai, C.L.: Spatial relationship preserving character motion adaptation. ACM Trans. Gr. 29(4), 33 (2010)Google Scholar
  6. 6.
    Jain, S., Liu, C.K.: Interactive synthesis of human-object interaction. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 47–53 (2009)Google Scholar
  7. 7.
    Kim, M., Hyun, K., Kim, J., Lee, J.: Synchronized multi-character motion editing. ACM Trans. Gr. 28(3), 79 (2009)Google Scholar
  8. 8.
    Kim, Th, Park, S.I., Shin, S.Y.: Rhythmic-motion synthesis based on motion-beat analysis. ACM Trans. Gr. 22(3), 392–401 (2003)CrossRefGoogle Scholar
  9. 9.
    Komura, T., Ho, E.S.L., Lau, R.W.H.: Animating reactive motion using momentum-based inverse kinematics. Comput. Anim. Virtual Worlds 16(3–4), 213–223 (2005)CrossRefGoogle Scholar
  10. 10.
    Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’02, pp. 473–482. ACM, New York (2002)Google Scholar
  11. 11.
    Lee, K.H., Choi, M.G., Lee, J.H.: Motion patches: building blocks for virtual environments annotated with motion data. ACM Trans. Gr. 25(3), 898–906 (2006)CrossRefGoogle Scholar
  12. 12.
    Macchietto, A., Zordan, V., Shelton, C.R.: Momentum control for balance. ACM Trans. Gr. 28(3), 80 (2009)Google Scholar
  13. 13.
    Nguyen, N., Wheatland, N., Brown, D., Parise, B., C. Karen Liu, V.Z.: Performance capture with physical interaction. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 189–195 (2010)Google Scholar
  14. 14.
    Popović, J., Seitz, S.M., Erdmann, M.: Motion sketching for control of rigid-body simulations. ACM Trans. Gr. 22(4), 1034–1054 (2003)CrossRefGoogle Scholar
  15. 15.
    Popović, J., Seitz, S.M., Erdmann, M., Popović, Z., Witkin, A.: Interactive manipulation of rigid body simulations. In: Proceedings of ACM Transactions on Graphics, pp. 209–217 (2000)Google Scholar
  16. 16.
    Shiratori, T., Nakazawa, A., Ikeuchi, K.: Dancing-to-music character animation. Comput. Gr. Forum 25(3), 449–458 (2006)CrossRefGoogle Scholar
  17. 17.
    Shum, H.P.H., Komura, T., Shiraishi, M., Yamazaki, S.: Interaction patches for multi-character animation. ACM Trans. Gr. 27(5), 114 (2008)Google Scholar
  18. 18.
    Wampler, K., Andersen, E., Herbst, E., Lee, Y.J., Popovi, Z.: Character animation in two-player adversarial games. ACM Trans. Gr. 29(3), 26 (2010)CrossRefGoogle Scholar
  19. 19.
    Yamane, K., Kuffner, J., Hodgins, J.K.: Synthesizing animations of human manipulation tasks. ACM Trans. Gr. 23(3), 532–539 (2004)CrossRefGoogle Scholar
  20. 20.
    Ye, Y., Liu, C.K.: Synthesis of responsive motion using a dynamic model. Comput. Gr. Forum 29(2), 555–562 (2010)CrossRefGoogle Scholar
  21. 21.
    Zordan, V., Macchietto, A., Medin, J., Soriano, M., Wu, C.C., Metoyer, R., Rose, R.: Anticpation from example. In: Proceedings of ACM Symposium on Virtual Reality Software and Technology pp. 81–84 (2007)Google Scholar
  22. 22.
    Zordan, V.B., Majkowska, A., Chiu, B., Fast, M.: Dynamic response for motion capture animation. ACM Trans. Gr. 24(3), 697–701 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jong-In Choi
    • 1
  • Shin-Jin Kang
    • 2
  • Chang-Hun Kim
    • 1
  • Jung Lee
    • 1
  1. 1.Department of Computer ScienceKorea UniversitySeoulKorea
  2. 2.School of GamesHongik UniversitySeoulKorea

Personalised recommendations