The Visual Computer

, Volume 31, Issue 6–8, pp 967–977 | Cite as

Graph-based deformable matching of 3D line with application in protein fitting

  • Hang Dou
  • Matthew L. Baker
  • Tao Ju
Original Article


We present an algorithm for matching two sets of line segments in 3D that have undergone non-rigid deformations. This problem is motivated by a biology application that seeks a correspondence between the alpha-helices from two proteins, so that matching helices have similar lengths and these can be aligned by some low-distortion deformation. While matching between two feature sets have been extensively studied, particularly for point features, matching line segments has received little attention so far. As typical in point-matching methods, we formulate a graph matching problem and solve it using continuous relaxation. We make two technical contributions. First, we propose a graph construction for undirected line segments such that the optimal matching between two graphs represents an as-rigid-as-possible deformation between the two sets of segments. Second, we propose a novel heuristic for discretizing the continuous solution in graph matching. Our heuristic can be applied to matching problems (such as ours) that are not amenable to certain heuristics, and it produces better solutions than those applicable heuristics. Our method is compared with a state-of-art method motivated by the same biological application and demonstrates improved accuracy.


Non-rigid Graph matching  Quadratic assignment  Line feature 



The work is supported in part by the NSF grants (DBI-1356388, DBI-1356306) and the NIH grants (5P41GM103832, 2R01GM079429, R21GM100229).


  1. 1.
    Abeysinghe, S.S., Baker, M.L., Chiu, W., Ju, T.: Semi-isometric registration of line features for flexible fitting of protein structures. Comput. Graph. Forum 29(7), 2243–2252 (2010)CrossRefGoogle Scholar
  2. 2.
    Anguelov, D., Koller, D., Srinivasan, P., Thrun, S., Pang, H.-C., Davis, J.: The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. In: Advances in Neural Information Processing Systems (NIPS 2004), Vancouver, Canada (2004)Google Scholar
  3. 3.
    Baker, M.L., Ju, T., Chiu, W.: Identification of secondary structure elements in intermediate-resolution density maps. Structure 15(1), 7–19 (2007)CrossRefGoogle Scholar
  4. 4.
    Berman, H., Henrick, K., Nakamura, H.: Announcing the worldwide protein data bank. Nat. Struct. Mol. Biol. 10(12), 980–980 (2003)CrossRefGoogle Scholar
  5. 5.
    Chang, W., Zwicker, M.: Range scan registration using reduced deformable models. Comput. Graph. Forum 28(2), 447–456 (2009)CrossRefGoogle Scholar
  6. 6.
    Chertok, M., Keller, Y.: Efficient high order matching. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2205–2215 (2010)CrossRefGoogle Scholar
  7. 7.
    Chiu, W., Baker, M.L., Almo, S.C.: Structural biology of cellular machines. Trends Cell Biol. 16, 144–150 (2006)CrossRefGoogle Scholar
  8. 8.
    Chou, S.-L., Tsai, W.-H.: Line segment matching for 3d computer vision using a new iteration scheme. Mach. Vis. Appl. 6(4), 191–205 (1993)CrossRefGoogle Scholar
  9. 9.
    Cour, v, Srinivasan, P., Shi, J.: Balanced graph matching. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems 19, pp. 313–320. MIT Press, New York (2007)Google Scholar
  10. 10.
    Duchenne, O., Bach, F., Kweon, I.-S., Ponce, J.: A tensor-based algorithm for high-order graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2383–2395 (2011)CrossRefGoogle Scholar
  11. 11.
    Feng, W., Huang, J., Ju, T., Bao, H.: Feature correspondences using morse smale complex. Vis. Comput. 29(1), 53–67 (2013)CrossRefGoogle Scholar
  12. 12.
    Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. Pattern Anal. Mach. Intell. IEEE Trans. 18(4), 377–388 (1996)CrossRefGoogle Scholar
  13. 13.
    Horaud, R.P., Skordas, T.: Stereo correspondence through feature grouping and maximal cliques. IEEE Trans. Pattern Anal. Mach. Intell. 11(11), 1168–1180 (1989)CrossRefGoogle Scholar
  14. 14.
    Kaick, O. V., Zhang, H., Hamarneh, G., Cohen-or, D.: A survey on shape correspondence. Comp. Graph. Forum 30(6), 1681–1707 (2011)Google Scholar
  15. 15.
    Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, vol. 2, pp. 1482–1489. IEEE (2005)Google Scholar
  16. 16.
    Leordeanu, M., Hebert, M., Sukthankar, R.: An integer projected fixed point method for graph matching and map inference. In: Advances in Neural Information Processing Systems, pp. 1114–1122 (2009)Google Scholar
  17. 17.
    Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. Eur. J. Oper. Res. 176(2), 657–690 (2007)CrossRefzbMATHGoogle Scholar
  18. 18.
    Schellewald, C., Schnorr, C.: Probabilistic subgraph matching based on convex relaxation. In: EMMCVPR, vol. 3757 of Lecture Notes in Computer Science, pp. 171–186. Springer, New York (2005)Google Scholar
  19. 19.
    Tam, G.K., Martin, R.R., Rosin, P.L., Lai, Y.-K.: Diffusion pruning for rapidly and robustly selecting global correspondences using local isometry. ACM Trans. Graph. 33(1), 4 (2014)CrossRefGoogle Scholar
  20. 20.
    Tam, G. K. L., Cheng, Z.-Q., Lai, Y.-K., Langbein, F.C., Liu, Y., Marshall, D., Martin, R.R., Sun, X.-F., Rosin, P.L.: Registration of 3D point clouds and meshes: a survey from rigid to non-rigid. IEEE Trans. Visual. Comp. Graph. 19(7), 1199–1217 (2013)Google Scholar
  21. 21.
    Tevs, A., Bokeloh, M., Wand, M., Schilling, A., Seidel, H.-P.: Isometric registration of ambiguous and partial data. In: CVPR, pp. 1185–1192. IEEE (2009)Google Scholar
  22. 22.
    Topf, M., Lasker, K., Webb, B., Wolfson, H., Chiu, W., Sali, A.: Protein structure fitting and refinement guided by cryo-em density. Structure 16(2), 295–307 (2008)CrossRefGoogle Scholar
  23. 23.
    Trabuco, L.G., Villa, E., Mitra, K., Frank, J., Schulten, K.: Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16(5), 673–683 (2008)CrossRefGoogle Scholar
  24. 24.
    Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42 (1976)MathSciNetCrossRefGoogle Scholar
  25. 25.
    van Kaick, O., Hamarneh, G., Zhang, H., Wighton, P.: Contour correspondence via ant colony optimization. In: Alexa, M., Gortler, S. J., Ju, T., (eds.) Pacific Conference on Computer Graphics and Applications, pp. 271–280 (2007)Google Scholar
  26. 26.
    Wang, L., Neumann, U.: A robust approach for automatic registration of aerial images with untextured aerial lidar data. In: CVPR, pp. 2623–2630. IEEE (2009)Google Scholar
  27. 27.
    Yu, Z., Bajaj, C.L.: A structure tensor approach for 3d image skeletonization: applications in protein secondary structure analysis. In: ICIP, pp. 2513–2516 (2006)Google Scholar
  28. 28.
    Zheng, W.: Accurate flexible fitting of high-resolution protein structures into cryo-electron microscopy maps using coarse-grained pseudo-energy minimization. Biophys. J. 100(2), 478–488 (2011)CrossRefGoogle Scholar
  29. 29.
    Zheng, W., Brooks, B.R.: Normal-modes-based prediction of protein conformational changes guided by distance constraints. Biophys. J. 88(5), 3109–3117 (2005)CrossRefGoogle Scholar
  30. 30.
    Zheng, Y., Doermann, D.S.: Robust point matching for nonrigid shapes by preserving local neighborhood structures. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 643–649 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Washington University in St. LouisSt. LouisUSA
  2. 2.Baylor College of MedicineHoustonUSA

Personalised recommendations