The Visual Computer

, Volume 31, Issue 6–8, pp 799–808 | Cite as

Adaptive voids

Primal and dual adaptive cellular structures for additive manufacturing
  • Asla Medeiros e Sá
  • Vinícius Moreira Mello
  • Karina Rodriguez Echavarria
  • Derek Covill
Original Article

Abstract

Additive manufacturing processes have the potential to change the way we produce everyday objects. Design for additive manufacturing focuses on dealing with the characteristics and constraints of a given additive process. These constraints include both geometric and material constraints which have a major impact on the feasibility, quality and cost of the printed object. When designing for additive manufacturing, one of the desirable objectives is to reduce the amount of material while maximising the strength of the printed part. For this, the inclusion of cellular structures in the design has been an efficient way to address these constraints while supporting other application-specific requirements. These structures, which are commonly inspired by shapes found in nature, provide high strength while maintaining a low mass. In this paper we propose the adaptive voids algorithm, an automatic approach to generate, given a volume boundary, a parameterised adaptive infill primal and/or dual cellular structure for additive manufacturing. The produced output can potentially be applied in various applications, including design and engineering, architecture, clothing and protective equipment, furniture and biomedical applications.

Keywords

Additive manufacturing Cellular structures 3D printing Primal-dual cellular structures  Geometric modeling Cell complexes 

References

  1. 1.
    Alemanno, G., Cignoni, P., Pietroni, N., Ponchio, F., Scopigno, R.: Interlocking pieces for printing tangible cultural heritage replicas. In: Klein, R., Santos, P. (eds.) Eurographics Workshop on Graphics and Cultural Heritage. The Eurographics Association (2014)Google Scholar
  2. 2.
    Ashby, M.F.: The properties of foams and lattices. Phil. Trans. R. Soc. A 364(1838), 15–30 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Atalay, F.B., Mount, D.M.: Pointerless implementation of hierarchical simplicial meshes and efficient neighbour finding in arbitrary dimensions. In: Proceedings of International Meshing Roundtable (IMR 2004), pp. 15–26 (2007)Google Scholar
  4. 4.
    Bächer, M., Whiting, E., Bickel, B., Sorkine-Hornung, O.: Spin-it: optimizing moment of inertia for spinnable objects. ACM Trans. Graph. 33(4), 96:1–96:10 (2014)CrossRefGoogle Scholar
  5. 5.
    Brackett, D.J., Ashcroft, I.A., Wildman, R.D., Hague, R.J.M.: An error diffusion based method to generate functionally graded cellular structures. Comput. Struct. 138, 102–111 (2014)CrossRefGoogle Scholar
  6. 6.
    Brennan-Craddock, J., Brackett, D., Wildman, R., Hague, R.: The design of impact absorbing structures for additive manufacture. J. Phys. Conf. Ser. 382(1), 012,042 (2012)CrossRefGoogle Scholar
  7. 7.
    Calí, J., Calian, D.A., Amati, C., Kleinberger, R., Steed, A., Kautz, J., Weyrich, T.: 3d-printing of non-assembly, articulated models. ACM Trans. Graph. 31(6), 130:1–130:8 (2012)CrossRefGoogle Scholar
  8. 8.
    Challis, V.J., Xu, X., Zhang, L.C., Roberts, A.P., Grotowski, J.F., Sercombe, T.B.: High specific strength and stiffness structures produced using selective laser melting. Mater. Design 63, 783–788 (2014)CrossRefGoogle Scholar
  9. 9.
    Chen, Y., Cadman, J., Zhou, S., Li, Q.: Computer-aided design and fabrication of bio-mimetic materials and scaffold micro-structures. Adv. Mater. Res. 213, 628–632 (2011)CrossRefGoogle Scholar
  10. 10.
    Chiu, W., Yeung, Y., Yu, K.: Toolpath generation for layer manufacturing of fractal objects. Rapid Prototyp. J. 12(4), 214–221 (2006)CrossRefGoogle Scholar
  11. 11.
    Cook, D., Newbauer, S., Leslie, A., Gervasi, V., Kumpaty, S.: Unit-cell-based custom therman management through additive manufacturing. In: Proceedings of the 23rd Annual Solid Freeform Fabrication Symposium (2012)Google Scholar
  12. 12.
    Deuss, M., Panozzo, D., Whiting, E., Liu, Y., Block, P., Sorkine-Hornung, O., Pauly, M.: Assembling self-supporting structures. ACM Trans. Graph. 33(6), 214:1–214:10 (2014)CrossRefGoogle Scholar
  13. 13.
    Dumas, J., Hergel, J., Lefebvre, S.: Bridging the gap: automated steady scaffoldings for 3d printing. ACM Trans. Graph. 33(4), 98:1–98:10 (2014)CrossRefGoogle Scholar
  14. 14.
    Fryazinov, O., Vilbrandt, T., Pasko, A.: Multi-scale space-variant FRep cellular structures. Comput. Aided Design 45(1), 26–34 (2013) (Computer-aided multi-scale materials and product design)Google Scholar
  15. 15.
    Gabrielli, R., Turner, I., Bowen, C.: Development of modelling methods for materials to be used as bone substitutes. Key Eng. Mater. 361–363, 903–906 (2008)CrossRefGoogle Scholar
  16. 16.
    Gibson, L.J., Ashby, M.F., Harley, B.A.: Cellular materials in nature and medicine. Cambridge (2010)Google Scholar
  17. 17.
    Hildebrand, K., Bickel, B., Alexa, M.: Orthogonal slicing for additive manufacturing. Shape Model. Int. (SMI) Conf. 37(6), 669–675 (2013)Google Scholar
  18. 18.
    Khoda, A.K.M., Ozbolat, I.T., Koc, B.: Designing heterogeneous porous tissue scaffolds for additive manufacturing processes. Comput. Aided Design 45(12), 1507–1523 (2013). doi:10.1016/j.cad.2013.07.003 CrossRefGoogle Scholar
  19. 19.
    Kumar, G.S., Pandithevan, P., Ambatti, A.R.: Fractal raster tool paths for layered manufacturing of porous objects. Virtual Phys. Prototyp. 4(2), 91–104 (2009)CrossRefGoogle Scholar
  20. 20.
    Lewiner, T., Velho, L., Lopes, H., Mello, V.: Simplicial isosurface compression. In: Vision, Modeling, and Visualization, pp. 299–306. IOS, Stanford (2004)Google Scholar
  21. 21.
    Lu, L., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Tu, C., Cohen-Or, D., Chen, B.: Build-to-last: strength to weight 3d printed objects. ACM Trans. Graph. 33(4), 97:1–97:10 (2014)Google Scholar
  22. 22.
    Luo, L., Baran, I., Rusinkiewicz, S., Matusik, W.: Chopper: partitioning models into 3d-printable parts. ACM Trans. Graph. 31(6), 129:1–129:9 (2012)Google Scholar
  23. 23.
    Maire, E., Fazekas, A., Salvo, L., Dendievel, R., Youssef, S., Cloetens, P., Letang, J.M.: X-ray tomography applied to the characterization of cellular materials related finite element modeling problems. Porous Mater. 63(16), 2431–2443 (2003)Google Scholar
  24. 24.
    Maubach, J.: Local bisection refinement for n-simplicial grids generated by reflections. SIAM J. Sci. Stat. Comput. 16, 210–227 (1995)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Melchels, F.P.W., Barradas, A.M.C., Blitterswijk, CAv, Boer, Jd, Feijen, J., Grijpma, D.W.: Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomaterialia 6(11), 4208–4217 (2010)CrossRefGoogle Scholar
  26. 26.
    Mello, V., Velho, L., Cavalcanti, P.R., Silva, C.: A generic programming approach to multiresolution spatial decompositions. Vis. Math. III 337–360 (2003)Google Scholar
  27. 27.
    Moroni, L., de Wijn, J., van Blitterswijk, C.: 3d fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 27(7), 974–985 (2006)CrossRefGoogle Scholar
  28. 28.
    Museth, K., Lait, J., Johanson, J., Budsberg, J., Henderson, R., Alden, M., Cucka, P., Hill, D., Pearce, A.: Openvdb: An open-source data structure and toolkit for high-resolution volumes. In: ACM SIGGRAPH 2013 Courses, SIGGRAPH ’13, pp. 19:1–19:1. ACM, New York (2013)Google Scholar
  29. 29.
    Olivares, A.L., Marsal, l, Planell, J.A., Lacroix, D.: Finite element study of scaffold architecture design and culture conditions for tissue engineering. Biomaterials 30(30), 6142–6149 (2009)CrossRefGoogle Scholar
  30. 30.
    Panozzo, D., Block, P., Sorkine-Hornung, O.: Designing unreinforced masonry models. ACM Trans. Graph. 32(4), 91:1–91:12 (2013)Google Scholar
  31. 31.
    Pasko, A., Fryazinov, O., Vilbrandt, T., Fayolle, P.A., Adzhiev, V.: Procedural function-based modelling of volumetric microstructures. Graph. Models 73(5), 165–181 (2011)CrossRefGoogle Scholar
  32. 32.
    Prévost, R., Whiting, E., Lefebvre, S., Sorkine-Hornung, O.: Make it stand: balancing shapes for 3d fabrication. ACM Trans. Graph. 32(4), 81:1–81:10 (2013)CrossRefGoogle Scholar
  33. 33.
    Ramirez, D.A., Murr, L.E., Li, S.J., Tian, Y.X., Martinez, E., Martinez, J.L., Machado, B.I., Gaytan, S.M., Medina, F., Wicker, R.B.: Open-cellular copper structures fabricated by additive manufacturing using electron beam melting. Mater. Sci. Eng. A 528(1617), 5379–5386 (2011)CrossRefGoogle Scholar
  34. 34.
    Reinhart, G., Teufelhart, S.: Optimization of mechanical loaded lattice structures by orientating their struts along the flux of force. Procedia CIRP 12, 175–180 (2013) (Eighth CIRP Conference on Intelligent Computation in Manufacturing Engineering)Google Scholar
  35. 35.
    Rivara, M.C.: A grid generator based on 4-triangles conforming mesh refinement algorithms. Int. J. Numer. Methods Eng. 24, 1343–1354 (1987)MATHCrossRefGoogle Scholar
  36. 36.
    Medeiros e Sá, A., Rodriguez Echavarria, K., Arnold, D.: Dual joints for 3d-structures. Visual Comput. 30(12), 1321–1331 (2014)CrossRefGoogle Scholar
  37. 37.
    Medeiros e Sá, A., Rodriguez Echavarria, K., Griffin, M., Covill, D., Kaminski, J., Arnold, D.: Parametric 3D-fitted Frames for Packaging Heritage Artefacts. In: Arnold, D., Kaminski, J., Niccolucci, F., Stork, A. (eds.) VAST: International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage. The Eurographics Association (2012). doi:10.2312/VAST/VAST12/105-112
  38. 38.
    Schroeder, C., Regli, W.C., Shokoufandeh, A., Sun, W.: Computer-aided design of porous artifacts. Comput. Aided Design 37(3), 339–353 (2005)CrossRefGoogle Scholar
  39. 39.
    Stava, O., Vanek, J., Benes, B., Carr, N., Mch, R.: Stress relief: improving structural strength of 3d printable objects. ACM Trans. Graph. 31(4), 48:1–48:11 (2012)CrossRefGoogle Scholar
  40. 40.
    Umetani, N., Schmidt, R.: Cross-sectional structural analysis for 3d printing optimization. In: SIGGRAPH Asia 2013 Technical Briefs, SA ’13, pp. 5:1–5:4. ACM, New York (2013)Google Scholar
  41. 41.
    Vanek, J., Galicia, J.A.G., Benes, B.: Clever support: efficient support structure generation for digital fabrication. Comput. Graph. Forum (2014)Google Scholar
  42. 42.
    Vanek, J., Galicia, J.A.G., Benes, B., Mch, R., Carr, N., Stava, O., Miller, G.S.: Packmerger: a 3d print volume optimizer. Comput. Graph. Forum 33(6), 322–332 (2014)CrossRefGoogle Scholar
  43. 43.
    Villalpando, L., Eiliat, H., Urbanic, R.J.: An optimization approach for components built by fused deposition modeling with parametric internal structures. Procedia CIRP 17, 800–805 (2014). doi:10.1016/j.procir.2014.02.050 (Variety Management in Manufacturing Proceedings of the 47th CIRP Conference on Manufacturing Systems)
  44. 44.
    Wang, W., Wang, T.Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F., Liu, X.: Cost-effective printing of 3d objects with skin-frame structures. ACM Trans. Graph. 32(6), 177:1–177:10 (2013)Google Scholar
  45. 45.
    Wettergreen, M., Bucklen, B., Starly, B., Yuksel, E., Sun, W., Liebschner, M.: Creation of a unit block library of architectures for use in assembled scaffold engineering. Bio-CAD 37(11), 1141–1149 (2005). doi:10.1016/j.cad.2005.02.005 Google Scholar
  46. 46.
    Wieding, J., Wolf, A., Bader, R.: Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone. J. Mech. Behav. Biomed. Mater. 37, 56–68 (2014)CrossRefGoogle Scholar
  47. 47.
    Yoo, D.J.: Porous scaffold design using the distance field and triply periodic minimal surfacemodels. Biomaterials 32(31), 7741–7754 (2011). doi:10.1016/j.biomaterials.2011.07.019 CrossRefGoogle Scholar
  48. 48.
    Zhang, Z., Jones, D., Yue, S., Lee, P.D., Jones, J.R., Sutcliffe, C.J., Jones, E.: Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants. Mater. Sci. Eng. C 33(7), 4055–4062 (2013)CrossRefGoogle Scholar
  49. 49.
    Zhou, Q., Panetta, J., Zorin, D.: Worst-case structural analysis. ACM Trans. Graph. 32(4), 137:1–137:12 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Escola de Matemática Aplicada FGV/EMApRio de JaneiroBrazil
  2. 2.Departamento de MatemáticaUFBASalvadorBrazil
  3. 3.Cultural Informatics Research GroupUniversity of BrightonBrightonUK
  4. 4.Department of Computing, Engineering and MathematicsUniversity of BrightonBrightonUK

Personalised recommendations