The Visual Computer

, Volume 31, Issue 6–8, pp 819–829 | Cite as

Modeling fruits and their internal structure using parametric 3Gmap L-systems

  • Evans Bohl
  • Olivier Terraz
  • Djamchid Ghazanfarpour
Original Article


Modeling a fruit using classic 3D modeling software can be a relatively complicated task. Moreover, modeling every single fruit when we need to generate a large variety of fruits of the same species is not a viable option because it is time consuming. This paper presents an original ad hoc method for modeling a wide range of 3D fruits, using a single formal grammar. Fruits are modeled by parametric 3Gmap L-systems that describe their shape and internal structure, thanks to variables and mathematical functions. At the end of our work, our method will eventually be an interesting solution to realistic modeling of fruits and their interior, and to automatic detection and recognition of real fruits.


Fruits Formal grammar  Procedural modeling 3Gmap L-systems 


  1. 1.
    Bao, F., Schwarz, M., Wonka, P.: Procedural facade variations from a single layout. ACM Trans. Graph. 32, 8 (2013)Google Scholar
  2. 2.
    Benes, B., Cordóba, J.A., Soto, J.M.: Modeling virtual gardens by autonomous procedural agents. In: Proceedings of TPCG, pp. 58–65. IEEE Computer Society, New York (2003)Google Scholar
  3. 3.
    Catmull, E., Clark, J.: Seminal Graphics. ACM, New York (1998)Google Scholar
  4. 4.
    Cieslak, M., Boudon, F., Kenouche, S., Zanca, M., Goze-Bac, C., Génard, M., Godin, C., Bertin, N.: Generating 3D volumetric meshes of internal and external fruit structure. In: Proceedings of HortiModel2012 (2012)Google Scholar
  5. 5.
    Cutler, B., Dorsey, J., McMillan, L., Müller, M., Jagnow, R.: A procedural approach to authoring solid models. In: Proceedings of ACM SIGGRAPH, pp. 302–311 (2002)Google Scholar
  6. 6.
    Durikovic, R., Kaneda, K., Yamashita, H.: Animation of biological organ growth based on l-systems. Comput. Graph. Forum 17, 1–13 (1998)CrossRefGoogle Scholar
  7. 7.
    Fowler, D.R., Prusinkiewicz, P., Battjes, J.: A collision-based model of spiral phyllotaxis. In: Proceedings of ACM SIGGRAPH, pp. 361–368 (1992)Google Scholar
  8. 8.
    Génard, M., Bertin, N., Borel, C., Bussières, P., Gautier, H., Habib, R., Léchaudel, M., Lecomte, A., Lescourret, F., Lobit, P., Quilot, B.: Towards a virtual fruit focusing on quality: modelling features and potential uses. J. Exp. Bot. 58, 917–928 (2007)CrossRefGoogle Scholar
  9. 9.
    Génard, M., Bertin, N., Gautier, H., Lescourret, F., Quilot, B.: Virtual profiling: a new way to analyse phenotypes. Plant J. 62, 344–355 (2010)CrossRefGoogle Scholar
  10. 10.
    Kider, J.T., Raja, S., Badler, N.I.: Fruit senescence and decay simulation. Comput. Graph. Forum 30, 257–266 (2011)CrossRefGoogle Scholar
  11. 11.
    Lienhardt, P.: Topological models for boundary representation: a comparison with \(n\)-dimensional generalized maps. Comput. Aided Des. 23, 59–82 (1991)zbMATHGoogle Scholar
  12. 12.
    Lienhardt, P.: \(N\)-dimensional generalized combinatorial maps and cellular quasi-manifolds. Int. J. Comput. Geom. Appl. 4, 275–324 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Lindenmayer, A.: Mathematical models for cellular interaction in development: parts I and II. J. Theoret. Biol. 18, 280–299 (1968)Google Scholar
  14. 14.
    Lindenmayer, A., Rozenberg, G.: Parallel generation of maps: developmental systems for cell layers. Graph. Gramm. Appl. Comput. Sci. Biol. 73, 301–316 (1978)Google Scholar
  15. 15.
    Lintermann, B., Deussen, O.: Interactive modeling of plants. IEEE Comput. Graph. Appl. 19, 56–65 (1999)CrossRefGoogle Scholar
  16. 16.
    Mauseth, J.D.: Botany: An Introduction to Plant Biology, 4th edn. Jones & Bartlett, New York (2009)Google Scholar
  17. 17.
    Müller, P., Wonka, P., Haegler, S., Ulmer, A., Gool, L.J.V.: Procedural modeling of buildings. ACM Trans. Graph. 25, 614–623 (2006)CrossRefGoogle Scholar
  18. 18.
    OECD: Tomatoes. International Standards for Fruit and Vegetables (2002)Google Scholar
  19. 19.
    Palubicki, W., Horel, K., Longay, S., Runions, A., Lane, B., Mech, R., Prusinkiewicz, P.: Self-organizing tree models for image synthesis. ACM Trans. Graph. 28 (2009)Google Scholar
  20. 20.
    Parish, Y.I.H., Mller, P.: Procedural modeling of cities. In: Proceedings of the SIGGRAPH, pp. 301–308 (2001)Google Scholar
  21. 21.
    Pasko, A., Adzhiev, V., Schmitt, B., Schlick, C.: Constructive hypervolume modeling. Graph. Models 63, 413–442 (2001)zbMATHCrossRefGoogle Scholar
  22. 22.
    Petrenko, O., Terraz, O., Sbert, M., Ghazanfarpour, D.: Interactive flower modeling with 3gmap l-systems. In: Proceedings of the 21st International Conference on Computer Graphics and Vision, pp. 20–24 (2011)Google Scholar
  23. 23.
    Peyrat, A., Terraz, O., Merillou, S., Galin, E.: Generating vast varieties of realistic leaves with parametric 2gmap l-systems. Vis. Comput. 24, 807–816 (2008)CrossRefGoogle Scholar
  24. 24.
    Prusinkiewicz, P., Hanan, P., Mech, R.: An l-system-based plant modelling language. In: International Workshop AGTIVE’99, pp. 395–410 (1999)Google Scholar
  25. 25.
    Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, New York (1996)zbMATHGoogle Scholar
  26. 26.
    Runions, A., Fuhrer, M., Lane, B., Federl, P., Rolland-Lagan, A.G., Prusinkiewicz, P.: Modeling and visualization of leaf venation patterns. ACM Trans. Graph. 24, 702–711 (2005)CrossRefGoogle Scholar
  27. 27.
    Runions, A., Lane, B., Prusinkiewicz, P.: Modeling trees with a space colonization algorithm. In: NPH, pp. 63–70. Eurographics Association (2007)Google Scholar
  28. 28.
    Takayama, K., Okabe, M., Ijiri, T., Igarashi, T.: Lapped solid textures: filling a model with anisotropic textures. ACM Trans. Graph. 27 (2008)Google Scholar
  29. 29.
    Takayama, K., Sorkine, O., Nealen, A., Igarashi, T.: Volumetric modeling with diffusion surfaces. ACM Trans. Graph. 29, 180 (2010)CrossRefGoogle Scholar
  30. 30.
    Terraz, O., Guimberteau, G., Merillou, S., Plemenos, D., Ghazanfarpour, D.: 3gmap l-systems: an application to the modelling of wood. Vis. Comput. 25, 165–180 (2009)CrossRefGoogle Scholar
  31. 31.
    UNECE: STANDARD FFV-36 concerning the marketing and commercial quality control of tomatoes (2012)Google Scholar
  32. 32.
    Wang, L., Yu, Y., Zhou, K., Guo, B.: Multiscale vector volumes. ACM Trans. Graph. 30, 167 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.XLIMLimoges CedexFrance

Personalised recommendations