The Visual Computer

, Volume 31, Issue 6–8, pp 873–881 | Cite as

Adaptive locomotion on slopes and stairs using pelvic rotation

  • Taekgu Lee
  • Jinho Park
  • Taesoo Kwon
Original Article


In this paper, we introduce a new online motion retargeting technique to generate natural locomotion of walking on slopes and stairs using only a single captured reference motion. An inverse-kinematics solver is developed to generate poses satisfying smooth trajectories of positional and rotational constraints for feet and hands. By considering the rotations of the pelvis and upper body, our technique is able to produce natural poses without knee-popping artifacts.


Computer animation Inverse kinematics Physics-based 



Taesoo Kwon and Jinho Park are co-corresponding authors of this paper. This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2014R1A1A1038386) and by the Technology Innovation Program (ID: 10047078) funded by the Ministry of Trade, industry and Energy (MI, Korea).


  1. 1.
    Arikan, O., Forsyth, D.A.: Interactive motion generation from examples. ACM Trans. Graph. (TOG) 21(3), 483–490 (2002)zbMATHCrossRefGoogle Scholar
  2. 2.
    Baerlocher, P., Boulic, R.: An inverse kinematics architecture enforcing an arbitrary number of strict priority levels. Vis. Comput. 20(6), 402–417 (2004)CrossRefGoogle Scholar
  3. 3.
    Boulic, R., Raunhardt, D.: Integrated analytic and linearized inverse kinematics for precise full body interactions. In: Motion in Games, pp. 231–242. Springer, Berlin (2009)Google Scholar
  4. 4.
    Buss, S.R., Kim, J.S.: Selectively damped least squares for inverse kinematics. J. Graph. Tools 10, 37–49 (2004)CrossRefGoogle Scholar
  5. 5.
    Coros, S., Beaudoin, P., van de Panne, M.: Robust task-based control policies for physics-based characters. ACM Trans. Graph. (TOG) 28(5), 1–9 (2009)CrossRefGoogle Scholar
  6. 6.
    de Lasa, M., Mordatch, I., Hertzmann, A.: Feature-based locomotion controllers. ACM Trans. Graph. (TOG) 29(4), 131 (2010)Google Scholar
  7. 7.
    de Lasa, M., Mordatch, I., Hertzmann, A.: Feature-based locomotion controllers. ACM Trans. Graph. (TOG) 29, 131:1–131:10 (2010)Google Scholar
  8. 8.
    Feng, A.W., Xu, Y., Shapiro, A.: An example-based motion synthesis technique for locomotion and object manipulation. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. I3D ’12, pp. 95–102. ACM, New York, NY, USA (2012)Google Scholar
  9. 9.
    Grochow, K., Martin, S.L., Hertzmann, A., Popović, Z.: Style-based inverse kinematics. ACM Trans. Graph. (TOG) 23(3), 522–531 (2004)CrossRefGoogle Scholar
  10. 10.
    Harrison, J., Rensink, R.A., Van De Panne, M.: Obscuring length changes during animated motion. ACM Trans. Graph. (TOG) 23(3), 569–573 (2004)CrossRefGoogle Scholar
  11. 11.
    Huang, W., Chew, C.M., Zheng, Y., Hong, G.S.: Pattern generation for bipedal walking on slopes and stairs. In: Humanoids, pp. 205–210. IEEE, Daejeon (2008)Google Scholar
  12. 12.
    Kallmann, M.: Analytical inverse kinematics with body posture control. Comput. Anim. Virtual Worlds 19(2), 79–91 (2008)CrossRefGoogle Scholar
  13. 13.
    Kim, Y., Neff, M.: Component-based locomotion composition. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’12, pp. 165–173 (2012)Google Scholar
  14. 14.
    Kovar, L., Schreiner, J., Gleicher, M.: Footskate cleanup for motion capture editing. In: Proceedings of the 2002 ACM SIGGRAPH Symposium on Computer Animation, pp. 97–104 (2002)Google Scholar
  15. 15.
    Kovar, L., Gleicher, M., Frédéric, : Motion graphs. ACM Trans. Graph. (TOG) 21(3), 473–482 (2002)CrossRefGoogle Scholar
  16. 16.
    Kwon, T., Hodgins, J.: Control systems for human running using an inverted pendulum model and a reference motion capture sequence. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 129–138 (2010)Google Scholar
  17. 17.
    Lau, M., Kuffner, J.J.: Behavior planning for character animation. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 271–280. ACM (2005)Google Scholar
  18. 18.
    Lay, A., Hass, C., Gregor, R.: The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis. J. Biomechan. 39(9), 1621–1628 (2006)CrossRefGoogle Scholar
  19. 19.
    Lee, Y., Kim, S., Lee, J.: Data-driven biped control. ACM Trans. Graph. (TOG) 29(4), 129 (2010) doi: 10.1145/1778765.1781155
  20. 20.
    Lee, J., Shin, S.Y.: A hierarchical approach to interactive motion editing for human-like figures. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 39–48 (1999)Google Scholar
  21. 21.
    Lee, J., Chai, J., Reitsma, P.S.A., Hodgins, J.K., Pollard, N.S.: Interactive control of avatars animated with human motion data. ACM Trans. Graph. (TOG) 21(3), 491–500 (2002)Google Scholar
  22. 22.
    Lee, Y., Wampler, K., Bernstein, G., Popović, J., Popović, Z.: Motion fields for interactive character locomotion. ACM Trans. Graph. (TOG) 29(6), 138:1–138:8 (2010)CrossRefGoogle Scholar
  23. 23.
    Ma, W., Xia, S., Hodgins, J.K., Yang, X., Li, C., Wang, Z.: Modeling style and variation in human motion. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 21–30 (2010)Google Scholar
  24. 24.
    McCann, J., Pollard, N.S.: Responsive characters from motion fragments. ACM Trans. Graph. (TOG) 26(3), 6 (2007) doi: 10.1145/1276377.1276385
  25. 25.
    Min, J., Chai, J.: Motion graphs\(++\): a compact generative model for semantic motion analysis and synthesis. ACM Trans. Graph. (TOG) 31(6), 153 (2012)CrossRefGoogle Scholar
  26. 26.
    Molla, E., Boulic, R.: Singularity free parametrization of human limbs. In: Proceedings of the Motion on Games, pp. 165–174. ACM (2013)Google Scholar
  27. 27.
    Mordatch, I., De Lasa, M., Hertzmann, A.: Robust physics-based locomotion using low-dimensional planning. ACM Trans. Graph. (TOG) 29(4), 71 (2010)CrossRefGoogle Scholar
  28. 28.
    Mukai, T., Kuriyama, S.: Geostatistical motion interpolation. ACM Trans. Graph. (TOG) 24(3), 1062–1070 (2005)CrossRefGoogle Scholar
  29. 29.
    Rose, C., Cohen, M.F., Bodenheimer, B.: Verbs and adverbs: multidimensional motion interpolation. IEEE Comput. Graph. Appl. 18(5), 32–40 (1998)CrossRefGoogle Scholar
  30. 30.
    Shin, H.J., Lee, J., Shin, S.Y., Gleicher, M.: Computer puppetry: an importance-based approach. ACM Trans. Graph. (TOG) 20(2), 67–94 (2001)CrossRefGoogle Scholar
  31. 31.
    Tolani, D., Goswami, A., Badler, N.I.: Real-time inverse kinematics techniques for anthropomorphic limbs. Graph. Models 62(5), 353–388 (2000)zbMATHCrossRefGoogle Scholar
  32. 32.
    Treuille, A., Lee, Y., Popović, Z.: Near-optimal character animation with continuous control. ACM Trans. Graph. (TOG) 26(3), 7 (2007)Google Scholar
  33. 33.
    Unzueta, L., Peinado, M., Boulic, R., Suescun, A.: Full-body performance animation with sequential inverse kinematics. Graph. Models 70(5), 87–104 (2008)CrossRefGoogle Scholar
  34. 34.
    Wang, J.M., Fleet, D.J., Hertzmann, A.: Optimizing walking controllers. ACM Trans. Graph. (TOG) 28(5), 1–8 (2009)Google Scholar
  35. 35.
    Wang, J.M., Fleet, D.J., Hertzmann, A.: Optimizing walking controllers for uncertain inputs and environments. ACM Trans. Graph. (TOG) 29(4), 73:1–73:8 (2010)Google Scholar
  36. 36.
    Wang, J.M., Hamner, S.R., Delp, S.L., Koltun, V.: Optimizing locomotion controllers using biologically-based actuators and objectives. ACM Trans. Graph. (TOG) 31(4), 25:1–25:11 (2012)Google Scholar
  37. 37.
    Wei, X.K., Chai, J.: Intuitive interactive human-character posing with millions of example poses. IEEE Comput. Graph. Appl. 31(4), 78–88 (2011)CrossRefGoogle Scholar
  38. 38.
    Wu, Jc, Popović, Z.: Terrain-adaptive bipedal locomotion control. ACM Trans. Graph. (TOG) 29, 72:1–72:10 (2010)Google Scholar
  39. 39.
    Wu, X., Tournier, M., Reveret, L.: Natural character posing from a large motion database. IEEE Comput. Graph. Appl. 31(3), 69–77 (2011)CrossRefGoogle Scholar
  40. 40.
    Yamane, K., Kuffner, J.J., Hodgins, J.K.: Synthesizing animations of human manipulation tasks. ACM Trans. Graph. (TOG) 23(3), 532–539 (2004)CrossRefGoogle Scholar
  41. 41.
    Yin, K., Coros, S., Beaudoin, P., van de Panne, M.: Continuation methods for adapting simulated skills. ACM Trans. Graph. (TOG) 27(3), 1–7 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Hanyang UniversitySeoulRepublic of Korea
  2. 2.Soongsil UniversitySeoulRepublic of Korea

Personalised recommendations