Skip to main content
Log in

Adaptive locomotion on slopes and stairs using pelvic rotation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new online motion retargeting technique to generate natural locomotion of walking on slopes and stairs using only a single captured reference motion. An inverse-kinematics solver is developed to generate poses satisfying smooth trajectories of positional and rotational constraints for feet and hands. By considering the rotations of the pelvis and upper body, our technique is able to produce natural poses without knee-popping artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Arikan, O., Forsyth, D.A.: Interactive motion generation from examples. ACM Trans. Graph. (TOG) 21(3), 483–490 (2002)

    Article  MATH  Google Scholar 

  2. Baerlocher, P., Boulic, R.: An inverse kinematics architecture enforcing an arbitrary number of strict priority levels. Vis. Comput. 20(6), 402–417 (2004)

    Article  Google Scholar 

  3. Boulic, R., Raunhardt, D.: Integrated analytic and linearized inverse kinematics for precise full body interactions. In: Motion in Games, pp. 231–242. Springer, Berlin (2009)

  4. Buss, S.R., Kim, J.S.: Selectively damped least squares for inverse kinematics. J. Graph. Tools 10, 37–49 (2004)

    Article  Google Scholar 

  5. Coros, S., Beaudoin, P., van de Panne, M.: Robust task-based control policies for physics-based characters. ACM Trans. Graph. (TOG) 28(5), 1–9 (2009)

    Article  Google Scholar 

  6. de Lasa, M., Mordatch, I., Hertzmann, A.: Feature-based locomotion controllers. ACM Trans. Graph. (TOG) 29(4), 131 (2010)

    Google Scholar 

  7. de Lasa, M., Mordatch, I., Hertzmann, A.: Feature-based locomotion controllers. ACM Trans. Graph. (TOG) 29, 131:1–131:10 (2010)

    Google Scholar 

  8. Feng, A.W., Xu, Y., Shapiro, A.: An example-based motion synthesis technique for locomotion and object manipulation. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. I3D ’12, pp. 95–102. ACM, New York, NY, USA (2012)

  9. Grochow, K., Martin, S.L., Hertzmann, A., Popović, Z.: Style-based inverse kinematics. ACM Trans. Graph. (TOG) 23(3), 522–531 (2004)

    Article  Google Scholar 

  10. Harrison, J., Rensink, R.A., Van De Panne, M.: Obscuring length changes during animated motion. ACM Trans. Graph. (TOG) 23(3), 569–573 (2004)

    Article  Google Scholar 

  11. Huang, W., Chew, C.M., Zheng, Y., Hong, G.S.: Pattern generation for bipedal walking on slopes and stairs. In: Humanoids, pp. 205–210. IEEE, Daejeon (2008)

  12. Kallmann, M.: Analytical inverse kinematics with body posture control. Comput. Anim. Virtual Worlds 19(2), 79–91 (2008)

    Article  Google Scholar 

  13. Kim, Y., Neff, M.: Component-based locomotion composition. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’12, pp. 165–173 (2012)

  14. Kovar, L., Schreiner, J., Gleicher, M.: Footskate cleanup for motion capture editing. In: Proceedings of the 2002 ACM SIGGRAPH Symposium on Computer Animation, pp. 97–104 (2002)

  15. Kovar, L., Gleicher, M., Frédéric, : Motion graphs. ACM Trans. Graph. (TOG) 21(3), 473–482 (2002)

    Article  Google Scholar 

  16. Kwon, T., Hodgins, J.: Control systems for human running using an inverted pendulum model and a reference motion capture sequence. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 129–138 (2010)

  17. Lau, M., Kuffner, J.J.: Behavior planning for character animation. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 271–280. ACM (2005)

  18. Lay, A., Hass, C., Gregor, R.: The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis. J. Biomechan. 39(9), 1621–1628 (2006)

    Article  Google Scholar 

  19. Lee, Y., Kim, S., Lee, J.: Data-driven biped control. ACM Trans. Graph. (TOG) 29(4), 129 (2010) doi:10.1145/1778765.1781155

  20. Lee, J., Shin, S.Y.: A hierarchical approach to interactive motion editing for human-like figures. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp. 39–48 (1999)

  21. Lee, J., Chai, J., Reitsma, P.S.A., Hodgins, J.K., Pollard, N.S.: Interactive control of avatars animated with human motion data. ACM Trans. Graph. (TOG) 21(3), 491–500 (2002)

    Google Scholar 

  22. Lee, Y., Wampler, K., Bernstein, G., Popović, J., Popović, Z.: Motion fields for interactive character locomotion. ACM Trans. Graph. (TOG) 29(6), 138:1–138:8 (2010)

    Article  Google Scholar 

  23. Ma, W., Xia, S., Hodgins, J.K., Yang, X., Li, C., Wang, Z.: Modeling style and variation in human motion. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 21–30 (2010)

  24. McCann, J., Pollard, N.S.: Responsive characters from motion fragments. ACM Trans. Graph. (TOG) 26(3), 6 (2007) doi:10.1145/1276377.1276385

  25. Min, J., Chai, J.: Motion graphs\(++\): a compact generative model for semantic motion analysis and synthesis. ACM Trans. Graph. (TOG) 31(6), 153 (2012)

    Article  Google Scholar 

  26. Molla, E., Boulic, R.: Singularity free parametrization of human limbs. In: Proceedings of the Motion on Games, pp. 165–174. ACM (2013)

  27. Mordatch, I., De Lasa, M., Hertzmann, A.: Robust physics-based locomotion using low-dimensional planning. ACM Trans. Graph. (TOG) 29(4), 71 (2010)

    Article  Google Scholar 

  28. Mukai, T., Kuriyama, S.: Geostatistical motion interpolation. ACM Trans. Graph. (TOG) 24(3), 1062–1070 (2005)

    Article  Google Scholar 

  29. Rose, C., Cohen, M.F., Bodenheimer, B.: Verbs and adverbs: multidimensional motion interpolation. IEEE Comput. Graph. Appl. 18(5), 32–40 (1998)

    Article  Google Scholar 

  30. Shin, H.J., Lee, J., Shin, S.Y., Gleicher, M.: Computer puppetry: an importance-based approach. ACM Trans. Graph. (TOG) 20(2), 67–94 (2001)

    Article  Google Scholar 

  31. Tolani, D., Goswami, A., Badler, N.I.: Real-time inverse kinematics techniques for anthropomorphic limbs. Graph. Models 62(5), 353–388 (2000)

    Article  MATH  Google Scholar 

  32. Treuille, A., Lee, Y., Popović, Z.: Near-optimal character animation with continuous control. ACM Trans. Graph. (TOG) 26(3), 7 (2007)

  33. Unzueta, L., Peinado, M., Boulic, R., Suescun, A.: Full-body performance animation with sequential inverse kinematics. Graph. Models 70(5), 87–104 (2008)

    Article  Google Scholar 

  34. Wang, J.M., Fleet, D.J., Hertzmann, A.: Optimizing walking controllers. ACM Trans. Graph. (TOG) 28(5), 1–8 (2009)

    Google Scholar 

  35. Wang, J.M., Fleet, D.J., Hertzmann, A.: Optimizing walking controllers for uncertain inputs and environments. ACM Trans. Graph. (TOG) 29(4), 73:1–73:8 (2010)

    Google Scholar 

  36. Wang, J.M., Hamner, S.R., Delp, S.L., Koltun, V.: Optimizing locomotion controllers using biologically-based actuators and objectives. ACM Trans. Graph. (TOG) 31(4), 25:1–25:11 (2012)

    Google Scholar 

  37. Wei, X.K., Chai, J.: Intuitive interactive human-character posing with millions of example poses. IEEE Comput. Graph. Appl. 31(4), 78–88 (2011)

    Article  Google Scholar 

  38. Wu, Jc, Popović, Z.: Terrain-adaptive bipedal locomotion control. ACM Trans. Graph. (TOG) 29, 72:1–72:10 (2010)

    Google Scholar 

  39. Wu, X., Tournier, M., Reveret, L.: Natural character posing from a large motion database. IEEE Comput. Graph. Appl. 31(3), 69–77 (2011)

    Article  Google Scholar 

  40. Yamane, K., Kuffner, J.J., Hodgins, J.K.: Synthesizing animations of human manipulation tasks. ACM Trans. Graph. (TOG) 23(3), 532–539 (2004)

    Article  Google Scholar 

  41. Yin, K., Coros, S., Beaudoin, P., van de Panne, M.: Continuation methods for adapting simulated skills. ACM Trans. Graph. (TOG) 27(3), 1–7 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

Taesoo Kwon and Jinho Park are co-corresponding authors of this paper. This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2014R1A1A1038386) and by the Technology Innovation Program (ID: 10047078) funded by the Ministry of Trade, industry and Energy (MI, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taesoo Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T., Park, J. & Kwon, T. Adaptive locomotion on slopes and stairs using pelvic rotation. Vis Comput 31, 873–881 (2015). https://doi.org/10.1007/s00371-015-1103-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-015-1103-1

Keywords

Navigation