The Visual Computer

, Volume 31, Issue 6–8, pp 753–763 | Cite as

Procedural floor plan generation from building sketches

  • Daniel Camozzato
  • Leandro Dihl
  • Ivan Silveira
  • Fernando Marson
  • Soraia R. Musse
Original Article

Abstract

We present a method for automated reconstruction of building interiors from hand-drawn building sketches. Image processing is used to extract the building’s outline and openings. Then, a procedural generation algorithm creates a floor plan according to user requisites. The proposed method handles a wide variety of input image styles and building shapes, including non-convex polygons. Possible applications include architectural tools and digital content generation.

Keywords

Sketch-based modeling Image processing Procedural generation 

Supplementary material

Supplementary material 1 (mov 25307 KB)

References

  1. 1.
    Ahmed, S., Liwicki, M., Weber, M., Dengel, A.: Automatic room detection and room labeling from architectural floor plans. In: Proceedings of the 2012 10th IAPR International Workshop on Document Analysis Systems, pp. 339–343 (2012)Google Scholar
  2. 2.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)CrossRefGoogle Scholar
  3. 3.
    Dahl, A., Rinde, L.: Procedural generation of indoor environments. Master’s thesis, Chalmers University of Technology (2008)Google Scholar
  4. 4.
    Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Mag. Commun. ACM 15, 11–15 (1972)MATHCrossRefGoogle Scholar
  5. 5.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis, vol. 576. Wiley, New York (1973)MATHGoogle Scholar
  6. 6.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of Fourth Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  7. 7.
    Hendrikx, M., Meijer, S., Van Der Velden, J., Iosup, A.: Procedural content generation for games: a survey. ACM Trans Multimed Comput Commun Appl (TOMCCAP) 9(1), 1 (2013)CrossRefGoogle Scholar
  8. 8.
    de las Heras, L.-P., Fernandez, D., Valveny, E., Llados, J., Sanchez, G.: Unsupervised wall detector in architectural floor plans. In: Proceedings of the 2013 12th International Conference on Document Analysis and Recognition, pp. 1245–1249 (2013)Google Scholar
  9. 9.
    Liu, H., Yang, Y.-L., AlHalawani, S., Mitra, N.J.: Constraint-aware interior layout exploration for pre-cast concrete-based buildings. Vis. Comput. 29, 663–673 (2013)CrossRefGoogle Scholar
  10. 10.
    Lopes, R., Tutenel, T., Smelik, R.M, de Kraker, K.J., Bidarra, R.: A constrained growth method for procedural floor plan generation. In: Proceedings of GAME-ON 2010, the 11th international conference on intelligent games and simulation, pp. 13–20 (2010)Google Scholar
  11. 11.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley symposium on mathematical statistics and probability, vol. 1, pp. 281–297 (1967)Google Scholar
  12. 12.
    Macé, S., Locteau, H., Valveny, E., Tabbone, S.: A system to detect rooms in architectural floor plan images. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, pp. 167–174 (2010)Google Scholar
  13. 13.
    Marson, F., Musse, S.R.: Automatic real-time generation of floor plans based on squarified treemaps algorithm. Int. J. Comput. Games Technol. 2010, 1–10 (2010)CrossRefGoogle Scholar
  14. 14.
    Merrell, P., Schkufza, E., Koltun, V.: Computer-generated residential building layouts. ACM Trans. Graph. (TOG) 29, 181 (2010)CrossRefGoogle Scholar
  15. 15.
    Peng, C.H., Yang, Y.L., Wonka, P.: Computing layouts with deformable templates. ACM Trans. Graph. (TOG) 33(4), 99 (2014)CrossRefGoogle Scholar
  16. 16.
    Peponis, J., Wineman, J., Rashid, M., Bafna, S.: On the description of shape and spatial configuration inside buildings: convex partitions and their local properties. Environm. Plann. B 24, 761–782 (1997)CrossRefGoogle Scholar
  17. 17.
    Rodrigues, E., Gaspar, A.R., Gomes, Á.: Automated approach for design generation and thermal assessment of alternative floor plans. Energy Build. 81, 170–181 (2014)CrossRefGoogle Scholar
  18. 18.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press Inc, New York (1983)Google Scholar
  19. 19.
    Smelik, R.M., Tutenel, T., Bidarra, R., Benes, B.: A survey on procedural modelling for virtual worlds. Comput. Graph. Forum 33, 31–50 (2014)CrossRefGoogle Scholar
  20. 20.
    So, C., Baciu, G., Sun, H.: Reconstruction of 3D virtual buildings from 2D architectural floor plans. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 17–23 (1998)Google Scholar
  21. 21.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the Sixth International Conference on Computer Vision, pp. 839–846 (1998)Google Scholar
  22. 22.
    Weber, B., Müller, P., Wonka, P., Gross, M.: Interactive geometric simulation of 4d cities. Comput. Graph. Forum 28, 481–492 (2009)CrossRefGoogle Scholar
  23. 23.
    Yeung, W.Y.: Creation of 3D model from 2D floor plan. In: Run Run Shaw Library, City University of Hong Kong (2008)Google Scholar
  24. 24.
    Yin, X., Wonka, P., Razdan, A.: Generating 3D building models from architectural drawings: a survey. IEEE Comput. Graph. Appl. 29, 20–30 (2009)CrossRefGoogle Scholar
  25. 25.
    Zmugg, R., Thaller, W., Krispel, U., Edelsbrunner, J., Havemann, S., Fellner, D.W.: Procedural architecture using deformation-aware split grammars. Vis. Comput. 30, 1009–1019 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Pontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  2. 2.Universidade do Vale do Rio dos SinosSão LeopoldoBrazil

Personalised recommendations