The Visual Computer

, Volume 31, Issue 6–8, pp 787–797 | Cite as

Layer the sphere

For accurate and additive voxelation by integer operation
Original Article

Abstract

Voxelation today is not only limited to discretization and representation of 3D objects, but has also been gaining tremendous importance in rapid prototyping through 3D printing. In this paper, we introduce a novel technique for discretization of a sphere in the integer space, which gives rise to a set of mathematically accurate, 3D-printable physical voxels up to the desired level of precision. The proposed technique is based on an interesting correspondence between the voxel set forming a discrete sphere and certain easy-to-compute integer intervals defined by voxel position and sphere dimension. It gives us several algorithmic leverages, such as computational sufficiency with simple integer operations and amenability to layer-by-layer additive fabrication. Theoretical analysis, prototype characteristics, and experimental results demonstrate its efficiency, versatility, and further prospects.

Keywords

3D printing Discrete sphere Integer algorithm  Rapid prototyping Sphere voxelation 

References

  1. 1.
    Andres, E.: Discrete circles, rings and spheres. Comput. Gr. 18(5), 695–706 (1994)CrossRefGoogle Scholar
  2. 2.
    Andres, E., Jacob, M.: The discrete analytical hyperspheres. IEEE TVCG 3(1), 75–86 (1997)Google Scholar
  3. 3.
    Augustin, C., Hungerbach, W.: Production of hollow spheres (HS) and hollow sphere structures (HSS). Mater. Lett. 63(1314), 1109–1112 (2009)CrossRefGoogle Scholar
  4. 4.
    Bera, S., Bhowmick, P., Bhattacharya, B.B.: A digital-geometric algorithm for generating a complete spherical surface in \({\mathbb{{Z}}}^3\). In: Proceedings of ICAA’14, LNCS, vol. 8321, pp. 49–61 (2014)Google Scholar
  5. 5.
    Bresenham, J.E.: A linear algorithm for incremental digital display of circular arcs. CACM 20(2), 100–106 (1977)MATHCrossRefGoogle Scholar
  6. 6.
    Brimkov, V.E., Barneva, R.P.: On the polyhedral complexity of the integer points in a hyperball. TCS 406(1–2), 24–30 (2008)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Chamizo, F., Cristobal, E.: The sphere problem and the \(L\)-functions. Acta Mathematica Hungarica 135(1–2), 97–115 (2012)Google Scholar
  8. 8.
    Chandru, V., Manohar, S., Prakash, C.E.: Voxel-based modeling for layered manufacturing. IEEE Comput. Gr. Appl. 15(6), 42–47 (1995)CrossRefGoogle Scholar
  9. 9.
    Cochran, J.K.: Ceramic hollow spheres and their applications. Curr. Opin. Solid State Mater. Sci. 3(5), 474–479 (1998)CrossRefGoogle Scholar
  10. 10.
    Cohen-Or, D., Kaufman, A.: Fundamentals of surface voxelization. Gr. Models Image Process. 57(6), 453–461 (1995)CrossRefGoogle Scholar
  11. 11.
    Coxeter, H.S.M.: Regular Polytopes. Dover Publications, New York (1973)Google Scholar
  12. 12.
    Desimone, J.M., Ermoshkin, A., Samulski, E.T.: Method and apparatus for three-dimensional fabrication. US Patent 20140361463 (2014)Google Scholar
  13. 13.
    Fiorio, C., Jamet, D., Toutant, J.L.: Discrete circles: An arithmetical approach with non-constant thickness. In: Proceedings of Vision Geometry XIV, Electronic Imaging, SPIE, vol. 6066, p. 60660C (2006)Google Scholar
  14. 14.
    Fiorio, C., Toutant, J.L.: Arithmetic discrete hyperspheres and separatingness. In: Proceedings of DGCI’06, pp. 425–436 (2006)Google Scholar
  15. 15.
    Foley, J.D., Dam, A.V., Feiner, S.K., Hughes, J.F.: Computer Graphics: Principles and Practice. Addison-Wesley, New York (1993)Google Scholar
  16. 16.
    Ghahramani, M., Garibov, A., Agayev, T.: Production and quality control of radioactive yttrium microspheres for medical applications. Appl. Radiat. Isot. 85, 87–91 (2014)CrossRefGoogle Scholar
  17. 17.
    Guo, L., Dong, X., Cui, X., Cui, F., Shi, J.: Morphology and dispersivity modulation of hollow microporous spheres synthesized by a hard template route. Mater. Lett. 63(1314), 1141–1143 (2009)CrossRefGoogle Scholar
  18. 18.
    Hearn, E.: Chapter 9: Thin cylinders and shells. In: Mechanics of Materials 1, 3 edn. Butterworth-Heinemann, Oxford (1997)Google Scholar
  19. 19.
    Hiller, J., Lipson, H.: Design and analysis of digital materials for physical 3D voxel printing. Rapid Prototyp. J. 15(2), 137–149 (2009)CrossRefGoogle Scholar
  20. 20.
    Hiller, J., Lipson, H.: Tunable digital material properties for 3D voxel printers. Rapid Prototyp. J. 16(4), 241–247 (2010)CrossRefGoogle Scholar
  21. 21.
    Hong, J.Y., Way, D.L., Shih, Z.C., Tai, W.K., Chang, C.C.: Inner engraving for the creation of a balanced lego sculpture. Vis. Comput. 1–10 (2015). doi:10.1007/s0037101510724
  22. 22.
    Hoque, M.E. (ed.): Advanced Applications of Rapid Prototyping Technology in Modern Engg. InTech (2011)Google Scholar
  23. 23.
    Jee, H.J., Sachs, E.: A visual simulation technique for 3D printing. Adv. Eng. Softw. 31(2), 97–106 (2000)CrossRefGoogle Scholar
  24. 24.
    Kamrani, A.K., Nasr, E.A.: Engineering Design and Rapid Prototyping. Springer, Boston (2009)Google Scholar
  25. 25.
    Kawashita, M., et al.: Preparation of ceramic microspheres for in situ radiotherapy of deep-seated cancer. Biomaterials 24(17), 2955–2963 (2003)CrossRefGoogle Scholar
  26. 26.
    Kim, O.: Rapid prototyping of electrically small spherical wire antennas. IEEE Trans. Antennas Propag. 62(7), 3839–3842 (2014)CrossRefGoogle Scholar
  27. 27.
    Klette, R.: Digital geometry: the birth of a new discipline. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 33–71 (2001)Google Scholar
  28. 28.
    Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)Google Scholar
  29. 29.
    Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406, 974–978 (2000)CrossRefGoogle Scholar
  30. 30.
    Maehara, H.: On a sphere that passes through \(n\) lattice points. Eur. J. Comb. 31(2), 617–621 (2010)MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Melchels, F.P., Domingos, M.A., Klein, T.J., Malda, J., Bartolo, P.J., Hutmacher, D.W.: Additive manufacturing of tissues and organs. Progr. Polym. Sci. 37(8), 1079–1104 (2012)CrossRefGoogle Scholar
  32. 32.
    Montani, C., Scopigno, R.: Graphics Gems (Chapter: Spheres-to-voxels conversion). pp. 327–334. Academic Press Professional Inc, San Diego (1990)Google Scholar
  33. 33.
    Nanya, T., Yoshihara, H., Maekawa, T.: Reconstruction of complete 3D models by voxel integration. J. Adv. Mech. Desig. Sys. Manuf. 7, 362–376 (2013)Google Scholar
  34. 34.
    Pintus, R., Gobbetti, E., Cignoni, P., Scopigno, R.: Shape enhancement for rapid prototyping. Vis. Comput. 26, 831–840 (2010)CrossRefGoogle Scholar
  35. 35.
    Roget, B., Sitaraman, J.: Wall distance search algorithm using voxelized marching spheres. J. Comput. Phys. 241, 76–94 (2013)CrossRefGoogle Scholar
  36. 36.
    Medeiros e Sá, A., Rodriguez Echavarria, K., Arnold, D.: Dual joints for 3d-structures. Vis. Comput. 30, 1321–1331 (2014)CrossRefGoogle Scholar
  37. 37.
    Sene, F.F., Martinelli, J.R., Okuno, E.: Synthesis and characterization of phosphate glass microspheres for radiotherapy applications. J. Non-Cryst. Solids 354, 4887–4893 (2008)CrossRefGoogle Scholar
  38. 38.
    Steingart, R.C., Tzu-Wei, D.: Fabrication of non-homogeneous articles via additive manufacturing using 3D voxel-based models. US Patent 8509933 (2013)Google Scholar
  39. 39.
    Toutant, J.L., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres: From morphological models to analytical characterizations and topological properties. Discret. Appl. Math. 161, 2662–2677 (2013)MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Waag, U., Schneider, L., Uthman, P., Stephani, G.: Metallic hollow spheres: materials for the future. Metal Powder Rep. 55, 29–33 (2000)CrossRefGoogle Scholar
  41. 41.
    Zheng, M., Cao, J., Chang, X., Wang, J., Liu, J., Ma, X.: Preparation of oxide hollow spheres by colloidal carbon spheres. Mater. Lett. 60, 2991–2993 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Computer Science and Engineering DepartmentIndian Institute of TechnologyKharagpurIndia

Personalised recommendations