The Visual Computer

, Volume 31, Issue 6–8, pp 775–785 | Cite as

A fast approach for perceptually-based fitting strokes into elliptical arcs

  • Pedro Company
  • Raquel Plumed
  • Peter A. C. Varley
Original Article


Fitting elliptical arcs to strokes of an input sketch is discussed. We describe an approach which automatically combines existing algorithms to get a balance of speed and precision. For measuring precision, we introduce fast metrics which are based on perceptual criteria and are tolerant of sketching imperfections. We return a likelihood estimate based on these metrics rather than deterministic yes/no result, in order that the approach can be used in higher-level collaborative-decision recognition flows.


Computer-aided sketching Sketch strokes Fitting primitives to strokes Elliptical arcs Perceptual fit Fast fit 



This work was partially funded by financial support from the Ramon y Cajal Scholarship Programme and by the “Pla de Promoció de la Investigació de la Universitat Jaume I”, Project P1 1B2010-01. We wish to thank Salvador Mondragón, who collected many questionnaires from his students, and Margarita Vergara, for her contribution to statistical data treatment.


  1. 1.
    Wang, S., Qin, S., Gao, M.: New grouping and fitting methods for interactive overtraced sketches. Vis. Comput. 30, 285–297 (2014)CrossRefGoogle Scholar
  2. 2.
    Pusch, R., Samavati, F., Nasri, A., Wyvill, B.: Improving the sketch-based interface. Vis. Comput. 23, 955–962 (2007)CrossRefGoogle Scholar
  3. 3.
    Xiong, Y., LaViola, J.: A shortstraw-based algorithm for corner finding in sketch-based interfaces. Comput. Graph. 34(5), 513–527 (2010)CrossRefGoogle Scholar
  4. 4.
    Saund, E., Moran, T.P.: A perceptually-supported sketch editor. In: Proceedings on UIST, pp. 175–184 (1994)Google Scholar
  5. 5.
    Chernov, N., Huang, Q., Ma, H.: Fitting quadratic curves to data points. Br. J. Math. Comput. Sci. 4, 33–60 (2014)CrossRefGoogle Scholar
  6. 6.
    Yu, J., Kulkarni, S.R., Poor, H.V.: Robust ellipse and spheroid fitting. Pattern Recognit. Lett. 33, 492–499 (2013)CrossRefGoogle Scholar
  7. 7.
    Rosin, P.L.: Ellipse fitting by accumulating five-point fits. Pattern Recognit. Lett. 14, 661–669 (1993)CrossRefGoogle Scholar
  8. 8.
    Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21, 476–480 (1999)CrossRefGoogle Scholar
  9. 9.
    Halir, R., Flusser, J.: Numerically stable direct least squares fitting of ellipses. In: Proceedings of 6th International Conference in Central Europe on Computer Graphics and Visualization (WSCG’98), pp. 125–132 (1998)Google Scholar
  10. 10.
    Kotagiri, S.: C# implementation for fitting an ellipse for a set of points. Srikanth Kotagiri’s Blog. (2010). Accessed Nov 2013
  11. 11.
    Shpitalni, M., Lipson, H.: Classification of sketch strokes and corner detection using conic sections and adaptive clustering. J. Mech. Des. Trans. ASME 119, 131–135 (1997)CrossRefGoogle Scholar
  12. 12.
    GSL-GNU Scientific Library. Accessed Nov 2013
  13. 13.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes. The Art of Scientific Computing, 3rd edn. Cambridge Press, Cambridge (2007)zbMATHGoogle Scholar
  14. 14.
    LAPACK-Linear Algebra PACKage. Accessed Nov 2013
  15. 15.
    Szpak, Z., Chojnacki, W., van den Hengel, A.: Guaranteed ellipse fitting with the Sampson distance. In: Proceedings of 12th European Conference on Computer Vision (ECCV). LNCS, vol. 7576, pp. 87–100 (2012)Google Scholar
  16. 16.
    Szpak, Z.L.: Research themes: ellipse fitting. Accessed May 2014
  17. 17.
    Davis, T.: Code to find the equation of a conic. (1996). Accessed Nov 2013
  18. 18.
    Elsen, C., Demaret, J.-N., Yang, M.C., Leclercq, P.: Document sketch-based interfaces for modeling and users’ needs: redefining connections. Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM 26, 281–301 (2012)CrossRefGoogle Scholar
  19. 19.
    Company, P., Plumed, R., Varley, P.: Study on perceptually-based fitting elliptic arcs. Technical Report Ref. 09/2015, Regeo. Geometric Reconstruction Group. (2015). Accessed Mar 2015
  20. 20.
    Company, P., Plumed, R., Varley, P.: Source code for fitting ellipses., Regeo. Geometric Reconstruction Group. (2015). Accessed Feb 2015
  21. 21.
    Eberly, D.: Distance from a point to an ellipse, an ellipsoid, or a hyperellipsoid, 2004. Internet publication: “Distance from a Point to an Ellipse in 2D”. Geometric Tools, LLC. Accessed Nov 2013. Book publication: “3D Game Engine Design”, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2007). (see Section 14.13.1)
  22. 22.
    Boyer, K.L.: Perceptual organization in computer vision: status, challenges, and potential. Comput. Vis. Image Underst. 76, 1–5 (1999)CrossRefGoogle Scholar
  23. 23.
    Hoffmann, D.: Visual Intelligence. How We Create What We See. WW Norton & Company, New York (1998)Google Scholar
  24. 24.
    Kumar, P., Cai, J., Miklavcic, S.: Improved ellipse fitting by considering the eccentricity of data point sets. In: Proceedings of ICIP, pp. 815–819 (2013)Google Scholar
  25. 25.
    Vaseghi, S.V.: Advanced Digital Signal Processing and Noise Reduction, 4th edn. Wiley, New York (2008)Google Scholar
  26. 26.
    Durbin, J.: Efficient estimation of parameters in moving average models. Biometrica 46, 306–316 (1959)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Wolin, A., Eoff, B., Hammond, T.: Shortstraw: a simple and effective corner finder for polylines. SBIM 2008, 33–40 (2008)Google Scholar
  28. 28.
    Masood, A., Sarfraz, M.: Corner detection by sliding rectangles along planar curves. Comput. Graph. 31, 440–448 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of New Imaging TechnologyUniversitat Jaume ICastellónSpain
  2. 2.Department of Mechanical Engineering and ConstructionUniversitat Jaume ICastellónSpain

Personalised recommendations