The Visual Computer

, Volume 31, Issue 6–8, pp 883–891 | Cite as

Human motion control with physically plausible foot contact models

  • Jongmin Kim
  • Hwangpil Park
  • Jehee Lee
  • Taesoo Kwon
Original Article


The foot-to-ground contact model plays an important role in the simulation of highly dynamic motions, such as turns and kicks. In this paper, we propose a method for solving dynamically cumbersome slipping contact problems, which are frequently observed in highly dynamic motions. We employ and modify a combination of two different types of cones representing the inequality constraints of a contact model: the friction cone and the velocity cone. The friction cone makes character animation physically plausible while the velocity cone allows a character to perform a sharp turn without foot-to-ground penetration. Our system effectively simulates human behavior using an inverted pendulum on a cart (IPC) model and motion capture data. In the pre-processing step, we analyze motion capture data to extract meaningful information for the IPC model. At run-time, our system produces a physically simulated character by tracking the desired motion that is predicted by the IPC model. We formulate human motion control as a quadratic programming satisfying the proposed foot-to-ground contact constraints. Our examples show that the proposed system can produce physically plausible character animation without noticeable foot-to-ground contact artifacts.


Physics-based simulation Character animation Data-driven animation 

Supplementary material

Supplementary material 1 (mp4 45609 KB)


  1. 1.
    Abe, Y., da Silva, M., Popović, J.: Multiobjective control with frictional contacts. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on computer animation, pp. 249–258, Eurographics Association (2007)Google Scholar
  2. 2.
    Baraff, D.: Analytical methods for dynamic simulation of non-penetrating rigid bodies. ACM SIGGRAPH Comput. Graph. 23(3), 223–232 (1989)CrossRefGoogle Scholar
  3. 3.
    Baraff, D.: Issues in computing contact forces for non-penetrating rigid bodies. Algorithmica 10(2–4), 292–352 (1993)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Baraff, D.: Fast contact force computation for nonpenetrating rigid bodies. In: Proceedings of the 21st annual conference on computer graphics and interactive techniques, pp. 23–34, ACM (1994)Google Scholar
  5. 5.
    Baraff, D.: Interactive simulation of solid rigid bodies. IEEE Comput. Graph. Appl. 15(3), 63–75 (1995)CrossRefGoogle Scholar
  6. 6.
    Baraff, D.: Linear-time dynamics using lagrange multipliers. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques, pp. 137–146. ACM (1996)Google Scholar
  7. 7.
    Bullet: Bullet Physics Library (2013).
  8. 8.
    Da Silva, M., Abe, Y., Popović, J.: Simulation of human motion data using short-horizon model-predictive control. In: Computer Graphics Forum, vol. 27, pp. 371–380. Wiley Online Library (2008)Google Scholar
  9. 9.
    Dorato, P., Cerone, V., Abdallah, C.: Linear-quadratic control: an introduction. Simon & Schuster, New York (1994)Google Scholar
  10. 10.
    Faloutsos, P., Van de Panne, M., Terzopoulos, D.: Composable controllers for physics-based character animation. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques, pp. 251–260. ACM (2001)Google Scholar
  11. 11.
    Geijtenbeek, T., Pronost, N., Egges, A., Overmars, M.H.: Interactive character animation using simulated physics. Eurographics-state of the art reports 2 (2011)Google Scholar
  12. 12.
    Glardon, P., Boulic, R., Thalmann, D.: Robust on-line adaptive footplant detection and enforcement for locomotion. Vis. Comput. 22(3), 194–209 (2006)CrossRefGoogle Scholar
  13. 13.
    Hodgins, J.K., Pollard, N.S.: Adapting simulated behaviors for new characters. In: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pp. 153–162.,Addison-Wesley Publishing Co, ACM Press (1997)Google Scholar
  14. 14.
    Hwang, J., Suh, I., Kwon, T.: Editing and synthesizing two-character motions using a coupled inverted pendulum model. In: Computer Graphics Forum, vol. 33, pp. 21–30. Wiley Online Library (2014)Google Scholar
  15. 15.
    Kajita, S., Nagasaki, T., Kaneko, K., Yokoi, K., Tanie, K.: A hop towards running humanoid biped. In: Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE international conference on, vol. 1, pp. 629–635, IEEE (2004)Google Scholar
  16. 16.
    Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. In: ACM transactions on graphics (TOG), vol. 21, pp. 473–482. ACM (2002)Google Scholar
  17. 17.
    Kovar, L., Gleicher, M., Schreiner, J.: Footskate cleanup for motion capture. In: ACM Siggraph Symposium on Computer Animation (2002)Google Scholar
  18. 18.
    Kwon, T., Hodgins, J.: Control systems for human running using an inverted pendulum model and a reference motion capture sequence. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 129–138. Eurographics Association (2010)Google Scholar
  19. 19.
    de Lasa, M., Mordatch, I., Hertzmann, A.: Feature-based locomotion controllers. ACM Trans. Graph. (TOG) 29(4), 131 (2010)Google Scholar
  20. 20.
    Lee, J., Shin, S.Y.: A hierarchical approach to interactive motion editing for human-like figures. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques (1999)Google Scholar
  21. 21.
    Lee, Y., Kim, S., Lee, J.: Data-driven biped control. ACM Trans. Graph. (TOG) 29(4), 129 (2010)Google Scholar
  22. 22.
    Lee, Y., Park, M.S., Kwon, T., Lee, J.: Locomotion control for many-muscle humanoids. ACM Trans. Graph. (TOG) 33(6), 218 (2014)CrossRefGoogle Scholar
  23. 23.
    Macchietto, A., Zordan, V., Shelton, C.R.: Momentum control for balance. ACM Trans. Graph. (TOG) 28, 80 (2009)CrossRefGoogle Scholar
  24. 24.
    Mirtich, B., Canny, J.: Impulse-Based Dynamic Simulation. Computer Science Division (EECS), University of California, California (1994)Google Scholar
  25. 25.
    Mirtich, B., Canny, J.: Impulse-based simulation of rigid bodies. In: Proceedings of the 1995 symposium on Interactive 3D graphics, pp. 181-ff ACM (1995)Google Scholar
  26. 26.
    Mordatch, I., De Lasa, M., Hertzmann, A.: Robust physics-based locomotion using low-dimensional planning. ACM Trans. Graph. (TOG) 29(4), 71 (2010)CrossRefGoogle Scholar
  27. 27.
    Muico, U., Lee, Y., Popović, J., Popović, Z.: Contact-aware nonlinear control of dynamic characters. ACM Trans. Graph. 28(3), 81:1–81:9 (2009)CrossRefGoogle Scholar
  28. 28.
    ODE: Open Dynamic Engine (2004).
  29. 29.
    Pražák, M., Hoyet, L., O’Sullivan, C.: Perceptual evaluation of footskate cleanup. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 287–294. ACM (2011)Google Scholar
  30. 30.
    da Silva, M., Abe, Y., Popović, J.: Interactive simulation of stylized human locomotion. ACM Trans. Graph. (TOG) 27, 82 (2008)CrossRefGoogle Scholar
  31. 31.
    Sok, K.W., Kim, M., Lee, J.: Simulating biped behaviors from human motion data. ACM Trans. Graph. (TOG). 26, 107 (2007)CrossRefGoogle Scholar
  32. 32.
    Sugihara, T.: Simulated regulator to synthesize zmp manipulation and foot location for autonomous control of biped robots. In: Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, pp. 1264–1269. IEEE (2008)Google Scholar
  33. 33.
    Wu, Jc, Popović, Z.: Terrain-adaptive bipedal locomotion control. ACM Trans. Graph. (TOG) 29(4), 72 (2010)CrossRefGoogle Scholar
  34. 34.
    Yin, K., Loken, K., Van de Panne, M.: Simbicon: simple biped locomotion control. ACM Trans. Graph. (TOG) 26, 105 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Division of Computer Science and SoftwareHanyang UniversitySeoulRepublic of Korea
  2. 2.Department of Computer Science and EngineeringSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations