The Visual Computer

, Volume 31, Issue 6–8, pp 1055–1065 | Cite as

Interactive interaction plot

Supporting parameter space exploration in a design phase
  • Rainer Splechtna
  • Mai Elshehaly
  • Denis Gračanin
  • Mario Ɖuras
  • Katja Bühler
  • Krešimir Matković
Original Article


Design of experiments (DOE) is the study of how to vary control parameters to efficiently design and evaluate experiments. Main effects plot and interaction plot are two data views often used to explore differences between mean values and interactions between the DOE parameters but they are mostly limited to two parameters. We propose a new data view, interactive interaction plot, that supports exploration and analysis of high-dimensional interactions between parameters. The data view is integrated within a coordinated multiple views system. We describe the new data view using an Olympic medals data set. We also describe a case study dealing with initial selection of hybrid vehicle components. Very positive feedback from automotive domain experts demonstrates the usefulness of the newly proposed approach.


Interactive visual analysis Interaction plot Main effects plot Design of experiments 



We thank Goran Todorović from AVL for numerous fruitful discussions. Part of this work was done in the scope of the K1 program at the VRVis Research Center. Part of this work was supported by a grant from the National Institute of Mental Health (R21MH100268).


  1. 1.
    AVL: AVL List GmbH (2015). Accessed 7 April 2015
  2. 2.
    Bachthaler, S., Weiskopf, D.: Continuous scatterplots. IEEE Trans. Vis. Comput. Gr. 14(6), 1428–1435 (2008)CrossRefGoogle Scholar
  3. 3.
    Berger, W., Piringer, H., Filzmoser, P., Gröller, E.: Uncertainty-aware exploration of continuous parameter spaces using multivariate prediction. Comput. Gr. Forum 30(3), 911–920 (2011)CrossRefGoogle Scholar
  4. 4.
    Booshehrian, M., Möller, T., Peterman, R.M., Munzner, T.: Vismon: facilitating analysis of trade-offs, uncertainty, and sensitivity in fisheries management decision making. Comput. Gr. Forum 31(3), 1235–1244 (2012)CrossRefGoogle Scholar
  5. 5.
    Box, G.E.P., Hunter, J.S., Hunter, W.G.: Statistics for Experimenters: Design, Innovation, and Discovery, 2nd edn. Wiley, Hoboken (2005)Google Scholar
  6. 6.
    Chambers, J., Hastie, T., Pregibon, D.: Statistical models in S. In: Momirovic, K., Mildner, V. (eds.) Compstat, pp. 317–321. Physica-Verlag, Heidelberg (1990)CrossRefGoogle Scholar
  7. 7.
    Chan, Y.H., Correa, C., Ma, K.L.: Flow-based scatterplots for sensitivity analysis. In: IEEE Symposium on Visual Analytics Science and Technology (VAST), pp. 43–50 (2010)Google Scholar
  8. 8.
    Demir, I., Dick, C., Westermann, R.: Multi-charts for comparative 3D ensemble visualization. IEEE Trans. Vis. Comput. Gr. 20(12), 2694–2703 (2014)CrossRefGoogle Scholar
  9. 9.
    Demir, I., Westermann, R.: Progressive high-quality response surfaces for visually guided sensitivity analysis. Comput. Gr. Forum 32(3), 21–30 (2013)CrossRefGoogle Scholar
  10. 10.
    Eriksson, L.: Design of Experiments: Principles and Applications. MKS Umetrics AB, Umeå (2008)Google Scholar
  11. 11.
    Ghorbani, R., Bibeau, E., Filizadeh, S.: On conversion of hybrid electric vehicles to plug-in. IEEE Trans. Veh. Technol. 59(4), 2016–2020 (2010)CrossRefGoogle Scholar
  12. 12.
    Heinrich, J., Weiskopf, D.: Continuous parallel coordinates. IEEE Trans. Vis. Comput. Gr. 15(6), 1531–1538 (2009)CrossRefGoogle Scholar
  13. 13.
    Kleijnen, J.P.C.: Design and Analysis of Simulation Experiments. International Series in Operations Research & Management Science. Springer, New York (2007)Google Scholar
  14. 14.
    Konyha, Z., Matkovic, K., Gracanin, D., Jelovic, M., Hauser, H.: Interactive visual analysis of families of function graphs. IEEE Trans. Vis. Comput. Gr. 12(6), 1373–1385 (2006)CrossRefGoogle Scholar
  15. 15.
    Lee, T., Filipi, Z.: Simulation based assessment of plug-in hybrid electric vehicle behavior during real-world 24-hour missions. In: SAE Technical Papers. SAE (2010)Google Scholar
  16. 16.
    Liu, S., Cui, W., Wu, Y., Liu, M.: A survey on information visualization: recent advances and challenges. Vis. Comput. 30(12), 1373–1393 (2014)CrossRefGoogle Scholar
  17. 17.
    Matkovic, K., Gracanin, D., Jelovic, M., Hauser, H.: Interactive visual steering-rapid visual prototyping of a common rail injection system. IEEE Trans. Vis. Comput. Gr. 14(6), 1699–1706 (2008)CrossRefGoogle Scholar
  18. 18.
    Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New York (2008)Google Scholar
  19. 19.
    Padua, L., Schulze, H., Matković, K., Delrieux, C.: Interactive exploration of parameter space in data mining: comprehending the predictive quality of large decision tree collections. Comput. Gr. 41, 99–113 (2014)CrossRefGoogle Scholar
  20. 20.
    Park, G.J.: Design of experiments. In: Analytic Methods for Design Practice, pp. 309–391. Springer, London (2007)Google Scholar
  21. 21.
    Phadke, M.N., Pinto, L., Alabi, O., Harter, J., Taylor II, R.M., Wu, X., Petersen, H., Bass, S.A., Healey, C.G.: Exploring ensemble visualization. In: IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics (2012)Google Scholar
  22. 22.
    Potter, K., Wilson, A., Bremer, P.T., Williams, D., Doutriaux, C., Pascucci, V., Johnson, C.R.: Ensemble-vis: A framework for the statistical visualization of ensemble data. In: Data Mining Workshops, 2009. ICDMW’09, pp. 233–240 (2009)Google Scholar
  23. 23.
    Roberts, J.: State of the art: Coordinated multiple views in exploratory visualization. In: Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization, pp. 61–71 (2007)Google Scholar
  24. 24.
    Sanyal, J., Zhang, S., Dyer, J., Mercer, A., Amburn, P., Moorhead, R.J.: Noodles: a tool for visualization of numerical weather model ensemble uncertainty. IEEE Trans. Vis. Comput. Gr. 16(6), 1421–1430 (2010)CrossRefGoogle Scholar
  25. 25.
    Shaffer, C.A., Knill, D.L., Watson, L.T.: Visualization for multiparameter aircraft designs. In: Proceedings of the Conference on Visualization ’98, pp. 491–494. IEEE Computer Society Press (1998)Google Scholar
  26. 26.
    Simpson, A., Fleck, R., Kee, R., Douglas, R., et al.: Development of a heavy duty hybrid vehicle model. In: SAE Technical Paper. SAE (2009)Google Scholar
  27. 27.
    Sports Reference: Olympics statistics and history (2015). Accessed 2 April 2015
  28. 28.
    Stork, A., Thole, C.A., Klimenko, S., Nikitin, I., Nikitina, L., Astakhov, Y.: Towards interactive simulation in automotive design. Vis. Comput. 24(11), 947–953 (2008)CrossRefGoogle Scholar
  29. 29.
    Tweedie, L., Spence, R., Dawkes, H., Su, H.: Externalising abstract mathematical models. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 406–411. ACM (1996)Google Scholar
  30. 30.
    Waser, J., Fuchs, R., Ribicic, H., Schindler, B., Bloschl, G., Groller, M.E.: World lines. IEEE Trans. Vis. Comput. Gr. 16(6), 1458–1467 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Rainer Splechtna
    • 1
  • Mai Elshehaly
    • 2
  • Denis Gračanin
    • 2
  • Mario Ɖuras
    • 3
  • Katja Bühler
    • 1
  • Krešimir Matković
    • 1
  1. 1.VRVis Research CenterViennaAustria
  2. 2.Virginia TechBlacksburgUSA
  3. 3.AVL-AST dooZagrebCroatia

Personalised recommendations