The Visual Computer

, Volume 31, Issue 6–8, pp 809–818 | Cite as

Comparison of three bounding regions with cubic convergence to planar freeform curves

  • Jaewook Lee
  • Yong-Joon Kim
  • Myung-Soo Kim
  • Gershon Elber
Original Article

Abstract

We compare the relative performance of bounding regions generated by three different curve-bounding methods with cubic convergence to planar freeform curves: spiral fat arcs (SFA) (Barton and Elber in Graph Models 73(2):50–57, 2011), bilens (Kumosenko in Comput Aided Geom Des 30(3):310–330, 2013), and bounding circular arcs (BCA) (Meek and Walton in J Comput Appl Math 59(2):221–231, 1995). For quantitative comparison, we consider three different criteria: geometric complexity (the number of circular arcs and line segments), construction time, and numerical stability. The BCA construction after one-step refinement (producing four circular arcs) is almost comparable to the other two methods in geometric complexity: the SFA with two circular arcs and two line segments, and the bilens with four circular arcs. In other comparison criteria, the BCA approach is more efficient and stable than the other two methods in producing a hierarchy of bounding regions that approximate a family of freeform planar curves within a given error bound.

Keywords

Planar freeform curves Monotone spiral curve Bounding circular arcs Dynamic BVH 

References

  1. 1.
    Akenine-Möller, T., Hains, E., Hoffman, N.: Real-Time Rendering, 3rd edn. A.K. Peters, Natick (2008)CrossRefGoogle Scholar
  2. 2.
    Aichholzer, O., Aigner, W., Aurenhammer, F., Hackl, T., Oberneder, M., Jüttler, B.: Medial axis computation for planar free-form shapes. Comput.-Aided Des. 41(5), 339–349 (2009)CrossRefGoogle Scholar
  3. 3.
    Aichholzer, O., Aigner, W., Aurenhammer, F., Hackl, T., Jüttler, B., Pilgerstorfer, E., Rabl, M.: Divide-and-conquer algorithms for Voronoi diagrams revisited. Comput. Geom.: Theory Appl. 43(8), 688–699 (2010)MATHCrossRefGoogle Scholar
  4. 4.
    Barton, M., Elber, G.: Spiral fat arcs—bounding regions with cubic convergence. Graph. Models 73(2), 50–57 (2011)MATHCrossRefGoogle Scholar
  5. 5.
    Barequet, G., Chazelle, B., Guibas, L., Mitchell, J., Tal, A.: BOXTREE: a hierarchical representation for surfaces in 3D. Comput. Graph. Forum 15(3), 387–396 (1996)CrossRefGoogle Scholar
  6. 6.
    Coons, S.: Surfaces for Computer-Aided Design. Technical report, MIT, 1964. Available as AD 663 504 from the National Technical Information Service. Springfield, VA, 22161Google Scholar
  7. 7.
    Ericson, C.: Real-Time Collision Detection. Morgan Kaufmann, San Francisco (2005)Google Scholar
  8. 8.
    Gottschalk, S., Lin, M., Manocha, D.: OBB-tree: a hierarchical structure for rapid interference detection. Computer Graphics (SIGGRAPH 1996), pp. 171–180 (1996)Google Scholar
  9. 9.
    Hubbard, P.: Collision detection for interactive graphics applications. IEEE Trans. Vis. Comput. Graph. 1(3), 218–230 (1995)CrossRefGoogle Scholar
  10. 10.
    Kim, Y.-J., Oh, Y.-T., Yoon, S.-H., Kim, M.-S., Elber, G.: Precise Hausdorff distance computation for planar freeform curves using biarcs and depth buffer. Vis. Comput. 26(6–8), 1007–1016 (2010)CrossRefGoogle Scholar
  11. 11.
    Kim, Y.-J., Lee, J., Kim, M.-S., Elber, G.: Efficient convex hull computation for planar freeform curves. Comput. Graph. 35(3), 698–705 (2011)CrossRefGoogle Scholar
  12. 12.
    Kim, Y.-J., Oh, Y.-T., Yoon, S.-H., Kim, M.-S., Elber, G.: Coons BVH for freeform geometric models. ACM Trans. Graph. 30(6), Article 169, SIGGRAPH Asia (2011)Google Scholar
  13. 13.
    Kim, Y.-J., Lee, J., Kim, M.-S., Elber, G.: Efficient offset trimming for planar rational curves using biarc trees. Comput. Aided Geom. Des. 29(7), 555–564 (2012)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Kim, Y.-J., Oh, Y.-T., Yoon, S.-H., Kim, M.-S., Elber, G.: Efficient Hausdorff distance computation for freeform geometric models in close proximity. Comput.-Aided Des. 45(2), 270–276 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kim, Y.-J., Kim, M.-S., Elber, G.: Precise convex hull computation for freeform models using a hierarchical Gauss map and a Coons bounding volume hierarchy. Comput.-Aided Des. 46(2), 252–257 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Klosowski, J., Held, M., Mitchell, J., Sowizral, H., Zikan, K.: Efficient collision detection using bounding volume hierarchies of k-dops. IEEE Trans. Vis. Comput. Graph. 4(1), 21–37 (1998)CrossRefGoogle Scholar
  17. 17.
    Kumosenko, A.: Biarcs and bilens. Comput. Aided Geom. Des. 30(3), 310–330 (2013)CrossRefGoogle Scholar
  18. 18.
    Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast proximity queries using swept sphere volumes. Technical report TR99-018, Dept. of Computer Science, UNC (1999)Google Scholar
  19. 19.
    Lee, J., Kim, Y.-J., KIm, M.-S., Elber, G.: Efficient offset trimming for deformable planar curves using a dynamic hierarchy of bounding circular arcs. Comput.-Aided Des. 58, 248–255 (2015)CrossRefGoogle Scholar
  20. 20.
    Lin, Q., Rokne, J.G.: Approximation by fat arcs and fat biarcs. Comput.-Aided Des. 34(13), 969–979 (2002)MATHCrossRefGoogle Scholar
  21. 21.
    Meek, D., Walton, D.: Approximating smooth planar curves by arc splines. J. Comput. Appl. Math. 59(2), 221–231 (1995)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Palmer, I., Grimsdale, R.: Collision detection for animation using sphere-trees. Comput. Graph. Forum 14(2), 105–116 (1995)CrossRefGoogle Scholar
  23. 23.
    Quinlan, S.: Efficient distance computation between non-convex objects. IEEE international conference on robotics and automation, pp. 3324–3329 (1994)Google Scholar
  24. 24.
    Sederberg, T.W., White, S.C., Zundel, A.K.: Fat arcs: a bounding region with cubic convergence. Comput. Aided Geom. Des. 6(3), 205–218 (1989)MATHCrossRefGoogle Scholar
  25. 25.
    Sir, Z., Feichtinger, R., Jüttler, B.: Approximating curves and their offsets using biarcs and Pythagorean hodograph quintics. Comput.-Aided Des. 38(6), 608–618 (2006)CrossRefGoogle Scholar
  26. 26.
    van den Bergen, G.: Efficient collision detection of complex deformable models using AABB trees. J. Graph. Tools 2(4), 1–14 (1997)MATHCrossRefGoogle Scholar
  27. 27.
    Yong, J.-H., Chen, X., Paul, J.-C.: An example on approximation by fat arcs and fat biarcs. Comput.-Aided Des. 38(5), 515–517 (2006)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jaewook Lee
    • 1
  • Yong-Joon Kim
    • 2
  • Myung-Soo Kim
    • 3
  • Gershon Elber
    • 2
  1. 1.Department of Electrical and Computer EngineeringSeoul National UniversitySeoulKorea
  2. 2.Computer Science DepartmentTechnionHaifaIsrael
  3. 3.Department of Computer Science and EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations