The Visual Computer

, Volume 31, Issue 6–8, pp 915–924 | Cite as

DTW-based kernel and rank-level fusion for 3D gait recognition using Kinect

  • Faisal Ahmed
  • Padma Polash Paul
  • Marina L. Gavrilova
Original Article

Abstract

This paper presents a new 3D gait recognition method that utilizes the kinect skeleton data for representing the gait signature. We propose to use two new features, namely joint relative distance (JRD) and joint relative angle (JRA), which are robust against view and pose variations. The relevance of each JRD and JRA sequence in representing human gait is evaluated using a genetic algorithm. We also introduce a dynamic time warping-based kernel that takes a collection of JRD or JRA sequences as parameters and computes a dissimilarity measure between the training and the unknown sample. The proposed kernel can effectively handle variable walking speed without any need of extra pre-processing. In addition, we propose a rank-level fusion of JRD and JRA features that can boost the overall recognition performance greatly. The effectiveness of the proposed method is evaluated using a 3D skeletal gait database captured with a Kinect v2 sensor. In our experiments, rank level fusion of joint relative distance (JRD) and joint relative angle (JRA) achieves promising results, as compared against only JRD and only JRA-based gait recognition.

Keywords

Gait recognition Kinect v2 sensor  Joint relative distance Joint relative angle DTW-kernel  3D skeleton 

References

  1. 1.
    Deutschmann, I., Nordstrom, P., Nilsson, L.: Continuous authentication using behavioral biometrics. IT Prof. 15(4), 12–15 (2013)CrossRefGoogle Scholar
  2. 2.
    Zhou, X., Bhanu, B.: Integrating face and gait for human recognition at a distance in video. IEEE Trans. Syst. Man. Cybern. Part B Cybern. 37(5), 1119–1137 (2007)CrossRefGoogle Scholar
  3. 3.
    Prabhakar, S., Pankanti, S., Jain, A.K.: Biometric recognition: security and privacy concerns. IEEE Secur. Privacy 1(2), 33–42 (2003)CrossRefGoogle Scholar
  4. 4.
    Munsell, B.C., Temlyakov, A, Qu, C., Wang, S.: Person identification using full-body motion and anthropometric biometrics from kinect videos. In: Proc. European Conf. on Computer Vision Ws/Demos, LNCS 7585, pp. 91–100 (2012)Google Scholar
  5. 5.
    Zhang, Y., Zheng, J., Magnenat-Thalmann, N.: Example-guided anthropometric human body modeling. The Visual Computer (CGI 2014), pp. 1–17 (2014)Google Scholar
  6. 6.
    Bae, M.S., Park, K.: Content-based 3D model retrieval using a single depth image from a low-cost 3D camera. Visual Comput. 29, 555–564 (2013)CrossRefGoogle Scholar
  7. 7.
    Zhou, L., Zhiwu, L., Leung, H., Shang, L.: Spatial temporal pyramid matching using temporal sparse representation for human motion retrieval. Visual Comput. 30, 845–854 (2014)CrossRefGoogle Scholar
  8. 8.
    Das Choudhury, S., Guan, Y., Chang-Tsun, L.: Gait recognition using low spatial and temporal resolution videos. In: Proc. Intl. Work. on Biometrics and Forensics, pp. 1–6 (2014)Google Scholar
  9. 9.
    Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1505–1518 (2003)CrossRefGoogle Scholar
  10. 10.
    Han, J., Bhanu, B.: Statistical Feature Fusion for Gait-based Human Recognition. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition. 2, pp. 842–847 (2004)Google Scholar
  11. 11.
    Wang, J., She, M., Nahavandi, S., Kouzani, A.: A review of vision-based gait recognition methods for human identification. In: Proc. IEEE Intl. Conf. on Digital Image Computing: Techniques and Application, pp. 320–327 (2010)Google Scholar
  12. 12.
    BenAbdelkader, C., Cutler, R., Davis, L.: Stride and cadence as a biometric in automatic person identification and verification. In: Proc. IEEE Intl. Conf. on Automatic Face and Gesture Recognition, pp. 372–377 (2002)Google Scholar
  13. 13.
    Urtasun, R., Fua, P.: 3D Tracking for Gait Characterization and Recognition. In: Proc. IEEE Intl. Conf. on Automatic Face and Gesture Recognition, pp. 17–22 (2004)Google Scholar
  14. 14.
    Yam, C., Nixon, M.S., Carter, J.N.: Automated person recognition by walking and running via model-based approaches. Pattern Recogn. 37, 1057–1072 (2004)CrossRefGoogle Scholar
  15. 15.
    Sinha, A., Chakravarty, K., Bhowmick, B.: Person Identification using skeleton Information from Kinect. In: Proc. Intl. Conf. on Advances in Computer-Human Interactions, pp. 101–108 (2013)Google Scholar
  16. 16.
    Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28, 316–322 (2006)CrossRefGoogle Scholar
  17. 17.
    Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23, 257–267 (2001)CrossRefGoogle Scholar
  18. 18.
    Chen, C., Liang, J., Zhao, H.: Frame difference energy image for gait recognition with incomplete silhouettes. Pattern Recogn. Lett. 30, 977–984 (2009)CrossRefGoogle Scholar
  19. 19.
    Li, X., Chen, Y.: Gait recognition based on structural Gait energy image. J. Comput. Inf. Syst. 9(1), 121–126 (2013)Google Scholar
  20. 20.
    Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth image. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1297–1304 (2011)Google Scholar
  21. 21.
    Stone, E.E., Skubic, M.: Evaluation of an inexpensive depth camera for passive in-home fall risk assessment. In: Proc. Intl. Pervasive Computing Technologies for Healthcare Conf., pp. 71–77 (2011)Google Scholar
  22. 22.
    Chang, Y.J., Chen, S.F., Huang, J.D.: A Kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. Res. Dev. Disabil. 32(6), 2566–2570 (2011)CrossRefGoogle Scholar
  23. 23.
    Popa, M., Koc, A.K., Rothkrantz, L.J.M., Shan, C., Wiggers, P.: Kinect sensing of shopping related actions. Commun. Comput. Inf. Sci. 277, 91–100 (2012)Google Scholar
  24. 24.
    Ball, A., Rye, D., Ramos, F., Velonaki, M.: Unsupervised clustering of people from ’Skeleton’ Data. In: Proc. ACM/IEEE Intl. Conf. on Human Robot Interaction, pp. 225–226 (2012)Google Scholar
  25. 25.
    Preis J., Kessel M., Linnhoff-Popien C., Werner M.: Gait recognition with kinect. In: Proc. Work. on Kinect in Pervasive Computing (2012)Google Scholar
  26. 26.
    Gabel, M., Gilad-Bachrach, R., Renshaw, E., Schuster, A.: Full body gait analysis with Kinect. In: Proc. Annual Intl. Conf. of the IEEE Engineering in Medicine and Biology Society, pp. 1964–1967 (2012)Google Scholar
  27. 27.
    Kinect for windows features: http://www.microsoft.com/en-us/kinectforwindows/meetkinect/features.aspx. Accessed 22 Apr 2015
  28. 28.
    Kale, A., Sundaresan, A., Rajagopalan, A.N., Cuntoor, N.P., Roy-Chowdhury, A.K., Kruger, V., Chellapa, R.: Identification of humans using Gait. IEEE Trans. Image Process. 13(9), 1163–1173 (2004)CrossRefGoogle Scholar
  29. 29.
    Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The humanID gait challenge problem: data sets, performance, and analysis. IEEE Trans. Pattern Anal. Mach. Intell. 27(2), 162–177 (2005)CrossRefGoogle Scholar
  30. 30.
    Tang, J.K., Leung, H.: Retrieval of logically relevant 3D human motions by Adaptive Feature Selection with Graded Relevance Feedback. Pattern Recogn. Lett. 33, 420–430 (2012)CrossRefGoogle Scholar
  31. 31.
    Tang, J.K., Leung, H., Komura, T., Shum, H.P.: Emulating human perception of motion similarity. Comput. Animat. Virtual Worlds 19, 211–221 (2008)CrossRefGoogle Scholar
  32. 32.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, USA (1975)Google Scholar
  33. 33.
    Kruskal, J.B., Liberman, M.: The symmetric time-warping problem: from continuous to discrete. In: Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparisons. Addison-Wesley, Reading, Massachusetts (1983)Google Scholar
  34. 34.
    Shanker, A.P., Rajagopalan, A.N.: Off-line signature verification using DTW. Pattern Recogn. Lett. 28, 1407–1414 (2007)CrossRefGoogle Scholar
  35. 35.
    Kumar, A., Shekhar, S.: Palmprint recognition using rank level fusion. IEEE Intl. Conf. on Image Processing, 3121–3124 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Faisal Ahmed
    • 1
  • Padma Polash Paul
    • 1
  • Marina L. Gavrilova
    • 1
  1. 1.Department of Computer ScienceUniversity of CalgaryCalgaryCanada

Personalised recommendations