The Visual Computer

, Volume 32, Issue 5, pp 641–651 | Cite as

Water simulation using a responsive surface tracking for flow-type changes

  • Jae-Gwang Lim
  • Bong-Jun Kim
  • Jeong-Mo HongEmail author
Original Article


The realistic simulation of fluids largely depends on a temporally coherent surface tracking method that can deal effectively with transitions between different types of flows. We model these transitions by constructing a very smooth fluid surface and a much rougher, splashy surface separately, and then blending them together in proportions that depend on the flow speed. This allows creative control of the behavior of the fluids as well as the visual results of the simulation. We overcome the well-known difficulty of obtaining smooth surfaces from Lagrangian particles by allowing them to carry normal vectors as well as signed distances from the level set surface and by introducing a new surface construction algorithm inspired by the moving least-squares method. We also implemented an adaptive form of the fluid-implicit-particle method that only places particles near visually interesting regions, which improves performance. Additionally, we introduce a novel subgrid solver based on the material point method to increase the amount of detail produced by the FLIP method. We present several examples that show visually convincing water flows.


Fluid modeling Water simulation  Fluid-implicit-particle method Surface tracking  Material point method 



This work was supported by the research program of Dongguk University, 2015, the National Research Foundation of Korea (NRF-2011-0023134), and the Korea Creative Content Agency (KOCCA) in the Culture Technology (CT) Research & Development Program 2012 (RST201100017).


  1. 1.
    Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. ACM Trans. Graph. 26(3), 48 (2007)Google Scholar
  2. 2.
    Ando, R., Tsuruno, R.: A particle-based method for preserving fluid sheets. In: SCA ’11 Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 7–16 (2011). doi: 10.1145/2019406.2019408
  3. 3.
    Ando, R., Thürey, N., Tsuruno, R.: Preserving fluid sheets with adaptively sampled anisotropic particles. IEEE Trans. Vis. Comput. Graph. 18, 1202–1214 (2012). doi: 10.1109/TVCG.2012.87 CrossRefGoogle Scholar
  4. 4.
    Ando, R., Thürey, N., Wojtan, C.: Highly adaptive liquid simulations on tetrahedral meshes. ACM Trans. Graph. 32(4), 103 (2013)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bhatacharya, H., Gao, Y., Bargteil, A.: A level-set method for skinning animated particle data. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 17–24. ACM (2011)Google Scholar
  6. 6.
    Boyd, L., Bridson, R.: MultiFLIP for energetic two-phase fluid simulation. ACM Trans. Graph. 31(2), 16 (2012)CrossRefGoogle Scholar
  7. 7.
    Brackbill, J.U., Ruppel, H.M.: FLIP: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. J. Comput. Phys. 65(2), 314–343 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Enright, D., Fedkiw, R., Ferziger, J., Mitchell, I.: A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183(1), 83–116 (2002)Google Scholar
  9. 9.
    Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. ACM Trans. Graph. 21(3), 736–744 (2002)CrossRefGoogle Scholar
  10. 10.
    Guo, Y.J., Nairn, J.A.: Three-dimensional dynamic fracture analysis using the material point method. Comput. Model. Eng. Sci. 16(3), 141 (2006)Google Scholar
  11. 11.
    Hong, W., House, D.H., Keyser, J.: An adaptive sampling approach to incompressible particle-based fluid. In: EG UK Theory and Practice of Computer Graphics (2009)Google Scholar
  12. 12.
    Hong, J.M., Kim, C.H.: Discontinuous fluids. ACM Trans. Graph.24(3), 915–920 (2005)Google Scholar
  13. 13.
    Hong, J.M., Lee, H.Y., Yoon, J.C., Kim, C.H.: Bubbles alive. ACM Trans. Graph. 27(3), 48 (2008)Google Scholar
  14. 14.
    Hong, J.M., Shinar, T., Fedkiw, R.: Wrinkled flames and cellular patterns. ACM Trans. Graph. 26(3), 1–47 (2007)Google Scholar
  15. 15.
    Ianniello, S., Di Mascio, A.: A self-adaptive oriented particles Level-Set method for tracking interfaces. J. Comput. Phys. 229(4), 1353–1380 (2010)Google Scholar
  16. 16.
    Jung, H.R., Kim, S.T., Noh, J., Hong, J.M.: A heterogeneous CPU–GPU parallel approach to a multigrid poisson solver for incompressible fluid simulation. Comput. Anim. Virtual Worlds 24(3–4), 185–193 (2013)Google Scholar
  17. 17.
    Kim, B., Liu, Y., Llamas, I., Jiao, X., Rossignac, J.: Simulation of bubbles in foam with the volume control method. In: ACM Transactions on Graphics (TOG), vol. 26, p. 98. ACM (2007)Google Scholar
  18. 18.
    Losasso, F., Talton, J., Kwatra, N., Fedkiw, R.: Two-way coupledSPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14(4), 797–804 (2008)CrossRefGoogle Scholar
  19. 19.
    Monaghan, J.J.: Smoothed particle hydrodynamics. Ann. Rev. Astron. Astrophys. 30, 543–574 (1992)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer animation, pp. 154–159. Eurographics Association (2003)Google Scholar
  21. 21.
    Nielsen, M.B., Østerby, O.: A two-continua approach to eulerian simulation of water spray. ACM Trans. Graph. 32(4), 67 (2013)CrossRefzbMATHGoogle Scholar
  22. 22.
    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin (2002)zbMATHGoogle Scholar
  23. 23.
    Shabana, A.A.: Computational Continuum Mechanics. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  24. 24.
    Shen, C., O’Brien, J.F., Shewchuk, J.: Interpolating and approximating implicit surfaces from polygon soup. ACM Trans. Graph. 23(3), 896–904 (2004)Google Scholar
  25. 25.
    Solenthaler, B., Schläfli, J., Pajarola, R.: A unified particle model for fluid-solid interactions. Comput. Anim. Virtual Worlds 18(1), 69–82 (2007)CrossRefGoogle Scholar
  26. 26.
    Stam, J.: Stable fluids. In: Proceedings. of SIGGRAPH 99, pp. 121–128 (1999)Google Scholar
  27. 27.
    Steffen, M., Kirby, R.M., Berzins, M.: Analysis and reduction of quadrature errors in the material point method (mpm). Int. J. Numer. Methods Eng. 76(6), 922–948 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle, A.: A material point method for snow simulation. ACM Trans. Graph. 32(4), 102 (2013)CrossRefzbMATHGoogle Scholar
  29. 29.
    Sulsky, D., Schreyer, H., Peterson, K., Kwok, R., Coon, M.: Using the material-point method to model sea ice dynamics. J. Geophys. Res. Oceans (1978–2012) 112(C2), C02S90 (2007). doi: 10.1029/2005JC003329
  30. 30.
    Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87, 236–252 (1995)CrossRefzbMATHGoogle Scholar
  31. 31.
    Thürey, N., Wojtan, C., Gross, M., Turk, G.: A multiscale approach to mesh-based surface tension flows. ACM Trans. Graph. 29(4), 1–48 (2010)Google Scholar
  32. 32.
    Wojtan, C., Thürey, N., Gross, M., Turk, G.: Physics-inspired topology changes for thin fluid features. ACM Trans. Graph. 29(4), 50 (2010)CrossRefGoogle Scholar
  33. 33.
    Yu, J., Turk, G.: Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM Trans. Graph. 32(1), 5 (2013)CrossRefzbMATHGoogle Scholar
  34. 34.
    Zhang, D.Z., Zou, Q., VanderHeyden, W.B., Ma, X.: Material point method applied to multiphase flows. J. Comput. Phys. 227(6), 3159–3173 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zhao, H.: A fast sweeping method for eikonal equations. Math. Comput. 74(250), 603–627 (2005)Google Scholar
  36. 36.
    Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM Trans. Graph. 24(3), 965–972 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Dongguk UniversitySeoulRepublic of Korea

Personalised recommendations