Advertisement

The Visual Computer

, Volume 32, Issue 5, pp 553–568 | Cite as

A fast modal space transform for robust nonrigid shape retrieval

  • Jianbo Ye
  • Yizhou Yu
Original Article

Abstract

Nonrigid or deformable 3D objects are common in many application domains. Retrieval of such objects in large databases based on shape similarity is still a challenging problem. In this paper, we take advantages of functional operators as characterizations of shape deformation, and further propose a framework to design novel shape signatures for encoding nonrigid geometries. Our approach constructs a context-aware integral kernel operator on a manifold, then applies modal analysis to map this operator into a low-frequency functional representation, called fast functional transform, and finally computes its spectrum as the shape signature. In a nutshell, our method is fast, isometry-invariant, discriminative, smooth and numerically stable with respect to multiple types of perturbations. Experimental results demonstrate that our new shape signature for nonrigid objects can outperform all methods participating in the nonrigid track of the SHREC’11 contest. It is also the second best performing method in the real human model track of SHREC’14.

Keywords

Content-based object retrieval Shape retrieval Biharmonic distance Functional map  Shape signature 

Notes

Acknowledgments

The authors would like to thank Maks Ovsjanikov and Dirk Smeets for sharing their software implementations.

References

  1. 1.
    Aflalo, Y., Kimmel, R.: Spectral multidimensional scaling. Proc. Natl. Acad. Sci. 110(45), 18052–18057 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Agathos, A., Pratikakis, I., Papadakis, P., Perantonis, S., Azariadis, P., Sapidis, N.S.: 3D articulated object retrieval using a graph-based representation. Vis Comput. 26(10), 1301–1319 (2010)CrossRefGoogle Scholar
  3. 3.
    Alfakih, A.Y.: On the eigenvalues of Euclidean distance matrices. Comput. Appl. Math. 27(3), 237–250 (2008)MathSciNetGoogle Scholar
  4. 4.
    Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Math 9(1), 17–29 (1951)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Attene, M., Falcidieno, B.: Remesh: an interactive environment to edit and repair triangle meshes. In: IEEE International Conference on Shape Modeling and Applications, 2006. SMI 2006, pp. 41–41. IEEE (2006)Google Scholar
  6. 6.
    Aubin, T.: Some Nonlinear Problems in Riemannian Geometry. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bogomolny, E., Bohigas, O., Schmit, C.: Spectral properties of distance matrices. J. Phys. A: Math. Gen 36(12), 3595 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: ShapeGoogle: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. (TOG) 30(1), 1 (2011)CrossRefGoogle Scholar
  9. 9.
    Bronstein, M.M., Bronstein, A.M.: Shape recognition with spectral distances. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 1065–1071 (2011)CrossRefGoogle Scholar
  10. 10.
    Buser, P., Conway, J., Doyle, P., Semmler, K.D.: Some planar isospectral domains. Int. Math. Res. Not. 1994(9), 391 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Castro, M., Menegatto, V.: Eigenvalue decay of positive integral operators on the sphere. Math. Comput. 81(280), 2303–2317 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cignoni, P., Corsini, M., Ranzuglia, G.: Meshlab: an open-source 3D mesh processing system. ERCIM News 73, 45–46 (2008)Google Scholar
  13. 13.
    Elad, A., Kimmel, R.: Bending invariant representations for surfaces. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001, vol. 1, pp. I–168. IEEE (2001)Google Scholar
  14. 14.
    Friedrichs, K.O.: Perturbation of Spectra in Hilbert Space, vol. 3. American Mathematical Society, Providence (1965)zbMATHGoogle Scholar
  15. 15.
    Giachetti, A., Lovato, C.: Radial symmetry detection and shape characterization with the multiscale area projection transform. Comput. Graph. Forum 31(5), 1669–1678 (2012)CrossRefGoogle Scholar
  16. 16.
    Gordon, C., Webb, D., Wolpert, S.: Isospectral plane domains and surfaces via Riemannian orbifolds. Invent. Math. 110(1), 1–22 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Vis Comput 25(5–7), 667–675 (2009)CrossRefGoogle Scholar
  18. 18.
    Kato, T.: Perturbation Theory for Linear Operators, vol. 132. Springer, Berlin (1995)zbMATHGoogle Scholar
  19. 19.
    Kurtek, S., Srivastava, A., Klassen, E., Laga, H.: Landmark-guided elastic shape analysis of spherically-parameterized surfaces. Comput. Graph. Forum 32(2pt4), 429–438 (2013)CrossRefGoogle Scholar
  20. 20.
    Laga, H., Mortara, M., Spagnuolo, M.: Geometry and context for semantic correspondences and functionality recognition in man-made 3D shapes. ACM Trans. Graph. (TOG) 32(5), 150 (2013)CrossRefGoogle Scholar
  21. 21.
    Lavoué, G.: Combination of bag-of-words descriptors for robust partial shape retrieval. Vis. Comput. 28(9), 931–942 (2012)CrossRefGoogle Scholar
  22. 22.
    Li, C., Hamza, A.B.: Intrinsic spatial pyramid matching for deformable 3D shape retrieval. Int. J. Multimed. Inf. Retr. 2(4), 261–271 (2013)CrossRefGoogle Scholar
  23. 23.
    Li, C., Hamza, A.B.: A multiresolution descriptor for deformable 3D shape retrieval. Vis. Comput. 29(6–8), 513–524 (2013)CrossRefGoogle Scholar
  24. 24.
    Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoue, G., van Nguyen, H., Ohbuchi, R., Ohkita, Y., Ohishi, Y., Porikli, F., Reuter, M., Sipiran, I., Smeets, D., Suetens, P., Tabia, H., Vandermeulen, D.: A comparison of methods for non-rigid 3D shape retrieval. Pattern Recognit. 46(1), 449–461 (2013)CrossRefGoogle Scholar
  25. 25.
    Lidskii, V.B.: Perturbation theory of non-conjugate operators. USSR Comput. Math. Math. Phys. 6(1), 73–85 (1966)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lipman, Y., Rustamov, R.M., Funkhouser, T.A.: Biharmonic distance. In: ACM Transactions on Graphics, ACM 0730–0301//10-ART (2007)Google Scholar
  27. 27.
    Litman, R., Bronstein, A., Bronstein, M., Castellani, U.: Supervised learning of bag-of-features shape descriptors using sparse coding. Comput. Graph. Forum 33(5), 127–136 (2014)CrossRefGoogle Scholar
  28. 28.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  29. 29.
    Maes, C., Fabry, T., Keustermans, J., Smeets, D., Suetens, P., Vandermeulen, D.: Feature detection on 3D face surfaces for pose normalisation and recognition. In: 2010 Fourth IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS), pp. 1–6. IEEE (2010)Google Scholar
  30. 30.
    Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. (TOG) 31(4), 30 (2012)CrossRefGoogle Scholar
  31. 31.
    Pickup, D., Sun, X., Rosin, P.L., Martin, R.R., Cheng, Z., Lian, Z., Aono, M., Hamza, A.B., Bronstein, A., Bronstein, M., et al.: Shrec’14 track: shape retrieval of non-rigid 3D human models. Proc. 3DOR 4(7), 8 (2014)Google Scholar
  32. 32.
    Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, vol. 37. Springer, Berlin (2007)CrossRefzbMATHGoogle Scholar
  33. 33.
    Raviv, Dan, Kimmel, Ron: Affine invariant geometry for non-rigid shapes. Int. J. Comput. Vis. 111(1), 1–11 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Reade, J.B.: Eigenvalues of positive definite kernels. SIAM J. Math. Anal. 14(1), 152–157 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Reuter, M., Wolter, F.-E., Peinecke, N.: Laplace–Beltrami spectra as ’shape-DNA’ of surfaces and solids. Comput.-Aided Des. 38(4), 342–366 (2006)CrossRefGoogle Scholar
  36. 36.
    Rustamov, R.M.: Laplace–Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of the Fifth Eurographics Symposium on Geometry Processing, pp. 225–233. Eurographics Association (2007)Google Scholar
  37. 37.
    Shilane, P., Min, P., Kazhdan, M.M., Funkhouser, T.A.: The princeton shape benchmark. In: Shape Modeling International, pp. 167–178. IEEE Computer Society (2004)Google Scholar
  38. 38.
    Smeets, D., Fabry, T., Hermans, J., Vandermeulen, D., Suetens, P.: Isometric deformation modelling for object recognition. In: CAIP 2009, LNCS 5702, pp. 757–765 (2009)Google Scholar
  39. 39.
    Stewart, G.W.: A Krylov–Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Appl. 23(3), 601–614 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature based on heat diffusion. Comput. Graph. Forum 28(5), 1383–1392 (2009)CrossRefGoogle Scholar
  41. 41.
    Sunada, T.: Riemannian coverings and isospectral manifolds. Ann. Math. 121(1), 169–186 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Tabia, H., Daoudi, M., Vandeborre, J.-P., Colot, O.: A new 3D-matching method of nonrigid and partially similar models using curve analysis. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 852–858 (2011)CrossRefGoogle Scholar
  43. 43.
    Tabia, H., Laga, H., Picard, D., Gosselin, P.-H.: Covariance descriptors for 3D shape matching and retrieval. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4185–4192. IEEE (2014)Google Scholar
  44. 44.
    Thakoor, N., Gao, J., Jung, S.: Hidden Markov model-based weighted likelihood discriminant for 2-D shape classification. Image Process. IEEE Trans. 16(11), 2707–2719 (2007)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Weyl, H.: Uber die asymptotische verteilung der eigenwerte. Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Naturwissenschaftliche Klasse, pp. 110–117 (1911)Google Scholar
  46. 46.
    Ye, J., Yan, Z., Yu, Y.: Fast nonrigid 3D retrieval using modal space transform. In: International Conference on Multimedia Retrieval, pp. 121–126 (2013)Google Scholar
  47. 47.
    Ying, X., Wang, X., He, Y.: Saddle vertex graph (svg): a novel solution to the discrete geodesic problem. ACM Trans. Graph. 32(6), 1–170 (2013)CrossRefGoogle Scholar
  48. 48.
    Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.: Surface feature detection and description with applications to mesh matching. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 373–380. IEEE (2009)Google Scholar
  49. 49.
    Zahn, C.T., Roskies, R.Z.: Fourier descriptors for plane closed curves. Comput. IEEE Trans. 100(3), 269–281 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method—its Basis and Fundamentals, vol. 1. Elsevier Butterworth-Heinemann, Amsterdam, London (2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Pennsylvania State UniversityState CollegeUSA
  2. 2.College of Computer ScienceZhejiang UniversityHangzhouChina

Personalised recommendations