Advertisement

The Visual Computer

, Volume 32, Issue 1, pp 57–66 | Cite as

Volume preserving viscoelastic fluids with large deformations using position-based velocity corrections

  • Tetsuya Takahashi
  • Yoshinori Dobashi
  • Issei Fujishiro
  • Tomoyuki Nishita
Original Article

Abstract

We propose a particle-based hybrid method for simulating volume preserving viscoelastic fluids with large deformations. Our method combines smoothed particle hydrodynamics (SPH) and position-based dynamics (PBD) to approximate the dynamics of viscoelastic fluids. While preserving their volumes using SPH, we exploit an idea of PBD and correct particle velocities for viscoelastic effects not to negatively affect volume preservation of materials. To correct particle velocities and simulate viscoelastic fluids, we use connections between particles which are adaptively generated and deleted based on the positional relations of the particles. Additionally, we weaken the effect of velocity corrections to address plastic deformations of materials. For one-way and two-way fluid-solid coupling, we incorporate solid boundary particles into our algorithm. Several examples demonstrate that our hybrid method can sufficiently preserve fluid volumes and robustly and plausibly generate a variety of viscoelastic behaviors, such as splitting and merging, large deformations, and Barus effect.

Keywords

Fluid simulation Viscoelasticity  Deformation  Volume preservation Velocity correction 

Notes

Acknowledgments

This work has been partly supported by JST CREST. We would like to thank anonymous reviewers for their valuable suggestions and comments.

References

  1. 1.
    Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., Teschner, M.: Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graph. 31(4), 62:1–62:8 (2012)Google Scholar
  2. 2.
    Becker, M., Ihmsen, M., Teschner, M.: Corotated SPH for deformable solids. In: Proceedings of the Fifth Eurographics Conference on Natural Phenomena, pp. 27–34 (2009)Google Scholar
  3. 3.
    Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 209–217 (2007)Google Scholar
  4. 4.
    Bender, J., Müller, M., Otaduy, M.A., Teschner, M.: Position-based methods for the simulation of solid objects in computer graphics. In: EUROGRAPHICS 2013 State of the Art Reports, pp. 1–22 (2013)Google Scholar
  5. 5.
    Bodin, K., Lacoursiere, C., Servin, M.: Constraint fluids. IEEE Trans. Vis. Comput. Graph. 18(3), 516–526 (2012)CrossRefGoogle Scholar
  6. 6.
    Chang, Y., Bao, K., Liu, Y., Zhu, J., Wu, E.: A particle-based method for viscoelastic fluids animation. In: Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology, pp. 111–117 (2009)Google Scholar
  7. 7.
    Clavet, S., Beaudoin, P., Poulin, P.: Particle-based viscoelastic fluid simulation. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 219–228 (2005)Google Scholar
  8. 8.
    Cummins, S.J., Rudman, M.: An SPH projection method. J. Comput. Phys. 152(2), 584–607 (1999)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Gerszewski, D., Bhattacharya, H., Bargteil, A.W.: A point-based method for animating elastoplastic solids. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 133–138 (2009)Google Scholar
  10. 10.
    He, X., Liu, N., Li, S., Wang, H., Wang, G.: Local poisson SPH for viscous incompressible fluids. Comput. Graph. Forum 31(6), 1948–1958 (2012)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Ihmsen, M., Akinci, N., Becker, M., Teschner, M.: A parallel SPH implementation on multi-core CPUs. Comput. Graph. Forum 30(1), 99–112 (2011)CrossRefGoogle Scholar
  12. 12.
    Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., Teschner, M.: Implicit incompressible SPH. IEEE Trans. Vis. Comput. Graph. 20(3), 426–435 (2014)CrossRefGoogle Scholar
  13. 13.
    Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., Teschner, M.: SPH fluids in computer graphics. In: EUROGRAPHICS 2014 State of the Art Reports, pp. 21–42 (2014)Google Scholar
  14. 14.
    Jones, B., Ward, S., Jallepalli, A., Perenia, J., Bargteil, A.W.: Deformation embedding for point-based elastoplastic simulation. ACM Trans. Graph. 33(2), 21:1–21:9 (2014)CrossRefGoogle Scholar
  15. 15.
    Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. 32(4), 104:1–104:5 (2013)CrossRefGoogle Scholar
  16. 16.
    Macklin, M., Müller, M., Chentanez, N., Kim, T.Y.: Unified particle physics for real-time applications. ACM Trans. Graph. 33(4), 104 (2014)Google Scholar
  17. 17.
    Mao, H., Yang, Y.H.: Particle-based non-Newtonian fluid animation with heating effects. Tech. rep. (2006)Google Scholar
  18. 18.
    Miller, G., Pearce, A.: Globular dynamics: a connected particle system for animating viscous fluids. Comput. Graph. 13(3), 305–309 (1989)CrossRefGoogle Scholar
  19. 19.
    Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 154–159 (2003)Google Scholar
  20. 20.
    Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J. Vis. Commun. Image Rep. 18(2), 109–118 (2007)CrossRefGoogle Scholar
  21. 21.
    Müller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Trans. Graph. 24(3), 471–478 (2005)Google Scholar
  22. 22.
    Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., Alexa, M.: Point based animation of elastic, plastic and melting objects. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 141–151 (2004)Google Scholar
  23. 23.
    Solenthaler, B., Pajarola, R.: Predictive-corrective incompressible SPH. ACM Trans. Graph. 28(3), 40:1–40:6 (2009)CrossRefGoogle Scholar
  24. 24.
    Solenthaler, B., Schläfli, J., Pajarola, R.: A unified particle model for fluid-solid interactions. Comput. Animat. Virtual Worlds 18(1), 69–82 (2007)CrossRefGoogle Scholar
  25. 25.
    Steele, K., Cline, D., Egbert, P.K., Dinerstein, J.: Modeling and rendering viscous liquids. Comput. Animat. Virtual Worlds 15(3–4), 183–192 (2004)CrossRefGoogle Scholar
  26. 26.
    Takahashi, T., Fujishiro, I., Nishita, T.: A velocity correcting method for volume preserving viscoelastic fluids. In: Proceedings of the Computer Graphics International 2014 (2014)Google Scholar
  27. 27.
    Takahashi, T., Nishita, T., Fujishiro, I.: Fast simulation of viscous fluids with elasticity and thermal conductivity using position-based dynamics. Comput. Graph. 43, 21–30 (2014)CrossRefGoogle Scholar
  28. 28.
    Takamatsu, K., Kanai, T.: A fast and practical method for animating particle-based viscoelastic fluids. Int. J. Virtual Real. 10, 29–35 (2011)Google Scholar
  29. 29.
    Tamura, N., Nakaguchi, T., Tsumura, N., Miyake, Y.: Spring-bead animation of viscoelastic materials. IEEE Comput. Graph. Appl. 27(6), 87–93 (2007)CrossRefGoogle Scholar
  30. 30.
    Terzopoulos, D., Platt, J., Fleischer, K.: Heating and melting deformable models. J. Vis. Comput. Animat. 2, 68–73 (1991)CrossRefGoogle Scholar
  31. 31.
    Zhou, Y., Lun, Z., Kalogerakis, E., Wang, R.: Implicit integration for particle-based simulation of elasto-plastic solids. Comput. Graph. Forum 32(7), 215–223 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tetsuya Takahashi
    • 1
  • Yoshinori Dobashi
    • 2
  • Issei Fujishiro
    • 3
  • Tomoyuki Nishita
    • 4
  1. 1.UEI Research, Keio UniversityTokyoJapan
  2. 2.Hokkaido University, UEI ResearchSapporoJapan
  3. 3.Keio UniversityTokyoJapan
  4. 4.UEI Research, Hiroshima Shudo UniversityTokyoJapan

Personalised recommendations