Skip to main content
Log in

A novel optimization framework for salient object detection

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Visual saliency aims to locate the noticeable regions or objects in an image. In this paper, a coarse-to-fine measure is developed to model visual saliency. In the proposed approach, we firstly use the contrast and center bias to generate an initial prior map. Then, we weight the initial prior map with boundary contrast to obtain the coarse saliency map. Finally, a novel optimization framework that combines the coarse saliency map, the boundary contrast and the smoothness prior is introduced with the intention of refining the map. Experiments on three public datasets demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Treisman, A., Gelade, G.: A feature-integration theory of attention. Cognit. Psychol. 12, 97–136 (1980)

  2. Tsotsos, J.: What roles can attention play in recognition? In: Proceedings of Seventh IEEE International Conference Development and Learning, pp. 55–60 (2008)

  3. Chen, T., Cheng, M., Tan, P., Shamir, A., Hu, S.: Sketch2photo: internet image montage. ACM Trans. on Graphics (2009)

  4. Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE TPAMI, pp. 1915–1926 (2012)

  5. Rutishauser, U., Walther, D., Koch, C., Perona, P.: Is bottom-up attention useful for object recognition? In: CVPR (2004)

  6. Itti, L.: Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Transactions on Image Processing, pp. 1304–1318 (2004)

  7. Itti, L., Koch, C., Niebur, E.: A model of saliency based visual attention for rapid scene analysis. IEEE TPAMI, pp. 1254–1259 (1998)

  8. Harel, J., Koch, C., Perona, P.: Graph based visual saliency. In: NIPS, pp. 545–552 (2006)

  9. Ma, Y.F., Zhang, H.J.: Contrast based image attention analysis by using fuzzy growing. In: ACM Multimedia, pp. 374–381 (2003)

  10. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., X, T., H.Y., S.: Learning to detect a salient object. IEEE TPAMI 33(2), 353–367 (2011)

    Article  Google Scholar 

  11. Zhai, Y., Shah, M.: Visual attention detection in video sequences using spatiotemporal cues. In: ACM Multimedia, pp. 815–824 (2006)

  12. Cheng, M.-M., Zhang, G.-X., Mitra, N.J., Huang, X., Hu, S.-M.: Global contrast based salient region detection. In: CVPR, pp. 409–416 (2011)

  13. Achanta, R., Hemami, S.S., Estrada, F.J., Sűsstrunk, S.: Frequency-tuned salient region detection. In: CVPR, pp. 1597–1604 (2009)

  14. Yang, C., Zhang, L.H., Lu, H.C.: Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Process. Lett. 20(7), 637–640 (2013)

    Article  Google Scholar 

  15. Li, J., Tian, Y., Duan, L.: Estimating visual saliency through single image optimization. IEEE Signal Process. Lett. 20(9), 845–848 (2013)

  16. Achanta, R., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC Superpixels, Tech. Rep. EPFL, Tech. Rep. 149300 (2010)

  17. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: CVPR (2007)

  18. Wei, Y.C., Wen, F., Zhu, W.J., Sun, J.: Geodesic saliency using background priors. In: ECCV (2012)

  19. Wang, D., Li, G., Jia, W., Luo, X.: Saliency-driven scaling optimization for image retargeting. The Visual Computer, pp. 853–860 (2011)

  20. Achanta, R., Estrada, F., Wils, P., et al.: Salient region detection and segmentation. In: ICVS (2008)

  21. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: CVPR, pp. 1155–1162 (2013)

  22. Cheng, M.-M., Warrell, J., Lin, W.-Y., Zheng, S., Vineet, V., Crook, N.: Efficient salient region detection with soft image abstraction. In: ICCV, pp. 1529–1536 (2013)

  23. Ma, Y., Zhang, H.: Contrast-based image attention analysis by using fuzzy growing. ACM Multimedia (2003)

  24. Perazzi, F., Krahenbuhl, P., Pritch, Y., et al.: Saliency filters: contrast based filtering for salient region detection. In: CVPR (2012)

  25. Xie, Y.L., Lu, H.C., Yang, M.H.: Bayesian saliency via low and mid level cues. IEEE TIP 1, 6 (2013)

    Google Scholar 

  26. Jiang, H., Wang, J., Yuan, Z., et al.: Automatic salient object segmentation based on context and shape prior. In: BMVC (2011)

  27. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 228–242 (2008)

    Article  Google Scholar 

  28. Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. IEEE TPAMI, pp. 2189–2202 (2012)

  29. Borji, A., Sihite, D.N., Itti, L.: Salient object detection: a benchmark. In: ECCV (2012)

  30. Cheng, M.-M., Zhang, Z., Lin, W.-Y., Torr, P.: BING: binarized normed gradients for objectness estimation at 300fps. In: IEEE CVPR (2014)

Download references

Acknowledgments

This work was supported by the Key Science and Technology Planning Project of Hunan province, China (Grant No. 2014GK2007) and the Natural Science Foundation of Hunan Province, China (Grant No. 2015JJ4014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xu, M., Zhuo, L. et al. A novel optimization framework for salient object detection. Vis Comput 32, 31–41 (2016). https://doi.org/10.1007/s00371-014-1053-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-014-1053-z

Keywords

Navigation