Abstract
Visual saliency aims to locate the noticeable regions or objects in an image. In this paper, a coarse-to-fine measure is developed to model visual saliency. In the proposed approach, we firstly use the contrast and center bias to generate an initial prior map. Then, we weight the initial prior map with boundary contrast to obtain the coarse saliency map. Finally, a novel optimization framework that combines the coarse saliency map, the boundary contrast and the smoothness prior is introduced with the intention of refining the map. Experiments on three public datasets demonstrate the effectiveness of the proposed method.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Treisman, A., Gelade, G.: A feature-integration theory of attention. Cognit. Psychol. 12, 97–136 (1980)
Tsotsos, J.: What roles can attention play in recognition? In: Proceedings of Seventh IEEE International Conference Development and Learning, pp. 55–60 (2008)
Chen, T., Cheng, M., Tan, P., Shamir, A., Hu, S.: Sketch2photo: internet image montage. ACM Trans. on Graphics (2009)
Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. IEEE TPAMI, pp. 1915–1926 (2012)
Rutishauser, U., Walther, D., Koch, C., Perona, P.: Is bottom-up attention useful for object recognition? In: CVPR (2004)
Itti, L.: Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Transactions on Image Processing, pp. 1304–1318 (2004)
Itti, L., Koch, C., Niebur, E.: A model of saliency based visual attention for rapid scene analysis. IEEE TPAMI, pp. 1254–1259 (1998)
Harel, J., Koch, C., Perona, P.: Graph based visual saliency. In: NIPS, pp. 545–552 (2006)
Ma, Y.F., Zhang, H.J.: Contrast based image attention analysis by using fuzzy growing. In: ACM Multimedia, pp. 374–381 (2003)
Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., X, T., H.Y., S.: Learning to detect a salient object. IEEE TPAMI 33(2), 353–367 (2011)
Zhai, Y., Shah, M.: Visual attention detection in video sequences using spatiotemporal cues. In: ACM Multimedia, pp. 815–824 (2006)
Cheng, M.-M., Zhang, G.-X., Mitra, N.J., Huang, X., Hu, S.-M.: Global contrast based salient region detection. In: CVPR, pp. 409–416 (2011)
Achanta, R., Hemami, S.S., Estrada, F.J., Sűsstrunk, S.: Frequency-tuned salient region detection. In: CVPR, pp. 1597–1604 (2009)
Yang, C., Zhang, L.H., Lu, H.C.: Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Process. Lett. 20(7), 637–640 (2013)
Li, J., Tian, Y., Duan, L.: Estimating visual saliency through single image optimization. IEEE Signal Process. Lett. 20(9), 845–848 (2013)
Achanta, R., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: SLIC Superpixels, Tech. Rep. EPFL, Tech. Rep. 149300 (2010)
Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: CVPR (2007)
Wei, Y.C., Wen, F., Zhu, W.J., Sun, J.: Geodesic saliency using background priors. In: ECCV (2012)
Wang, D., Li, G., Jia, W., Luo, X.: Saliency-driven scaling optimization for image retargeting. The Visual Computer, pp. 853–860 (2011)
Achanta, R., Estrada, F., Wils, P., et al.: Salient region detection and segmentation. In: ICVS (2008)
Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: CVPR, pp. 1155–1162 (2013)
Cheng, M.-M., Warrell, J., Lin, W.-Y., Zheng, S., Vineet, V., Crook, N.: Efficient salient region detection with soft image abstraction. In: ICCV, pp. 1529–1536 (2013)
Ma, Y., Zhang, H.: Contrast-based image attention analysis by using fuzzy growing. ACM Multimedia (2003)
Perazzi, F., Krahenbuhl, P., Pritch, Y., et al.: Saliency filters: contrast based filtering for salient region detection. In: CVPR (2012)
Xie, Y.L., Lu, H.C., Yang, M.H.: Bayesian saliency via low and mid level cues. IEEE TIP 1, 6 (2013)
Jiang, H., Wang, J., Yuan, Z., et al.: Automatic salient object segmentation based on context and shape prior. In: BMVC (2011)
Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image matting. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 228–242 (2008)
Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. IEEE TPAMI, pp. 2189–2202 (2012)
Borji, A., Sihite, D.N., Itti, L.: Salient object detection: a benchmark. In: ECCV (2012)
Cheng, M.-M., Zhang, Z., Lin, W.-Y., Torr, P.: BING: binarized normed gradients for objectness estimation at 300fps. In: IEEE CVPR (2014)
Acknowledgments
This work was supported by the Key Science and Technology Planning Project of Hunan province, China (Grant No. 2014GK2007) and the Natural Science Foundation of Hunan Province, China (Grant No. 2015JJ4014).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, H., Xu, M., Zhuo, L. et al. A novel optimization framework for salient object detection. Vis Comput 32, 31–41 (2016). https://doi.org/10.1007/s00371-014-1053-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-014-1053-z