The Visual Computer

, Volume 31, Issue 5, pp 733–746 | Cite as

Automatic blur-kernel-size estimation for motion deblurring

  • Shaoguo Liu
  • Haibo Wang
  • Jue Wang
  • Sunghyun Cho
  • Chunhong Pan
Original Article

Abstract

Existing image deblurring approaches often take the blur-kernel-size as an important manual parameter. When set improperly, this parameter can lead to significant errors in the estimated blur kernels. However, manually specifying a proper kernel size for an input image is usually a tedious trial-and-error process. In this paper, we propose a new approach for automatically estimating the underlying blur-kernel-size value that can lead to good kernel estimation. Our approach takes advantage of the autocorrelation map (automap) of image gradients that is known to reflect the motion blur information. We show that the standard automap suffers from structural edges in the image and cannot be directly used for kernel size estimation. To alleviate this problem, we develop a modified automap method that contains a directional attenuation component, which can effectively reduce the influence of structural edges, leading to more accurate and reliable kernel size estimation. Experimental results suggest that the proposed approach can help state-of-the-art deblurring algorithms achieve accurate kernel estimation without relying on manual parameter tweaking.

Keywords

Image deblurring Blur-kernel-size Motion blur prior Autocorrelation Directional attenuation 

References

  1. 1.
    Biemond, J., Tekalp, A., Lagendijk, R.: Maximum likelihood image and blur identification: a unifying approach. Opt. Eng. 29(5), 422–435 (1990)CrossRefGoogle Scholar
  2. 2.
    Burns, J., Hanson, A., Riseman, E.: Extracting straight lines. IEEE Trans. Pattern Anal. Mach. Intell. 8(4), 425–455 (1986)CrossRefGoogle Scholar
  3. 3.
    Cai, J., Ji, H., Liu C., Shen, Z.: Blind motion deblurring from a single image using sparse approximation. In: Proceedings of Computer Vision and Pattern Recognition, pp. 104–111 (2009)Google Scholar
  4. 4.
    Chan, T., Wong, C.: Total variation blind deconvolution. IEEE Trans. Image Process. 7(3), 370–375 (1998)CrossRefGoogle Scholar
  5. 5.
    Chen, J., Yuan, L., Tang C., Quan, L.: Robust dual motion deblurring. In: Proceedings of Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  6. 6.
    Cho, T., Joshi, N., Zitnick, C., Kang, S., Szeliski R., Freeman, W.: A content-aware image prior. In: Proceedings of Computer Vision and Pattern Recognition, pp. 169–176 (2010)Google Scholar
  7. 7.
    Cho, S., Lee. S.: Fast motion deblurring. ACM Trans. Graph., vol. 28, no. 5 (2009).Google Scholar
  8. 8.
    Cho, T., Paris, S., Horn, B., Freeman, W., Gool, L.: Blur kernel estimation using the radon transform. In: Proceedings of Computer Vision and Pattern Recognition, pp. 241–248 (2011)Google Scholar
  9. 9.
    Cho, T., Joshi, N., Zitnick, C., Kang, S., Szeliski, R., Freeman, W.: Image restoration by matching gradient distributions. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 683–694 (2012)CrossRefGoogle Scholar
  10. 10.
    Fergus, R., Singh, B., Hertzmann, A., Roweis, S., Freeman, W.: Removing camera shake from a single photograph. ACM Trans. Graph. 25(3), 787–794 (2006)CrossRefGoogle Scholar
  11. 11.
    Fienup, J.: Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982)CrossRefGoogle Scholar
  12. 12.
    Gioi, R., Jakubowicz, J., Morel J., Randall, G.: LSD: a line segment detector. J. Image Process. Line (2012)Google Scholar
  13. 13.
    Gioi, R., Jakubowicz, J., Morel, J., Randall, G.: On straight line segment detection. J. Math. Imag. Vis. 32(3), 317–347 (2008)Google Scholar
  14. 14.
    Gioi, R., Jakubowicz, J., Morel, J., Randall, G.: LSD: a fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 722–732 (2010)CrossRefGoogle Scholar
  15. 15.
    Goldstein A., Fattal, R.: Blur-kernel estimation from spectral irregularities. In: Proceedings of European Conference on Computer Vision, pp. 622–635 (2012)Google Scholar
  16. 16.
  17. 17.
  18. 18.
    Hu, W., Xue, J., Zheng, N.: PSF estimation via gradient domain correlation. IEEE Trans. Image Process. 21(1), 386–392 (2012)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Jia, J.: Single image motion deblurring using transparency. In: Proceedings of Computer Vision and Pattern Recognition, pp. 1–8 (2007) Google Scholar
  20. 20.
    Joshi, N., Zitnick, C., Szeliski, R., Kriegman, D.: Image deblurring and denoising using color priors. In: Proceedings of Computer Vision and Pattern Recognition, pp. 1550–1557 (2009)Google Scholar
  21. 21.
    Joshi, N. Szeliski, R., Kriegman, D.: PSF estimation using sharp edge prediction. In: Proceedings of Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  22. 22.
    Kahn, P., Kitchen, L., Riseman, E.: A fast line finder for vision-guided robot navigation. IEEE Trans. Pattern Anal. Mach. Intell. 12(11), 1098–1102 (1990)CrossRefGoogle Scholar
  23. 23.
    Kohler, R. , Hirsch, M., Mohler, B., Scholkopf B., Harmeling, S.: Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database. In: Proceedings of European Conference on Computer Vision, pp. 27–40 (2012)Google Scholar
  24. 24.
    Krishnan D., Fergus, R.: Fast image deconvolution using hyper-kaplacian priors. In: Proceedings of Neural Information Processing Systems, pp. 1033–1041 (2009)Google Scholar
  25. 25.
    Krishnan, D., Tay T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: Proceedings of Computer Vision and Pattern Recognition, pp. 233–240 (2011)Google Scholar
  26. 26.
    Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: Proceedings of Computer Vision and Pattern Recognition, pp. 233–240 (2011)Google Scholar
  27. 27.
    Levin, A., Weiss, Y., Durand F., Freeman, W.: Efficient marginal likelihood optimization in blind deconvolution. In: Proceedings of Computer Vision and Pattern Recognition, pp. 2657–2664 (2011)Google Scholar
  28. 28.
    Levin, A., Weiss, Y. Durand, F., Freeman, W.: Understanding and evaluating blind deconvolution algorithms. In: Proceedings of Computer Vision and Pattern Recognition, pp. 1964–1971 (2009)Google Scholar
  29. 29.
    Matas, J., Galambos, C., Kittler, J.: Robust detection of lines using the progressive probabilistic hough transform. Comput. Vis. Image Underst. 78(1), 119–137 (2000)CrossRefGoogle Scholar
  30. 30.
    Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. 27(3), 73–83 (2008)CrossRefGoogle Scholar
  31. 31.
    Simoncelli, E.: Statistical models for images: compression, restoration and synthesis. In: Proceedings of Asilomar Conference on Signals, Systems and Computers, pp. 673–678 (1997)Google Scholar
  32. 32.
    Sun, L., Hays, J.: Super-resolution from internet-scale scene matching: In: Proceedings of International Conference on Computational Photography, pp. 1–12 (2012)Google Scholar
  33. 33.
    Topal, C., Akinlar, C., Genc, Y., Kriegman, D.: Edge drawing: a heuristic approach to robust real-time edge detection. In: Proceedings of International Conference on Pattern Recognition, pp. 2424–2427 (2010)Google Scholar
  34. 34.
    Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  35. 35.
    Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Proceedings of European Conference on Computer Vision, pp. 157–170 (2010)Google Scholar
  36. 36.
    Xu, L., Zheng S., Jia, J.: Unnatural \(L_0\) sparse representation for natural image deblurring. In: Proceedings of Computer Vision and Pattern Recognition, pp. 1107–1114 (2013)Google Scholar
  37. 37.
    Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. ACM Trans. Graph. 31(6), 787–794 (2006)Google Scholar
  38. 38.
    Yitzhaky, Y., Mor, I., Lantzman, A., Kopeika, N.: Direct method for restoration of motion-blurred images. J. Opt. Soc. Am. A 15(6), 1512–1519 (1998)CrossRefGoogle Scholar
  39. 39.
    You, Y., Kaveh, M.: Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27(4), 919–940 (1990)CrossRefGoogle Scholar
  40. 40.
    You, Y., Kaveh, M.: A regularization approach to joint blur identification an image restoration. IEEE Trans. Image Process. 5(3), 416–428 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Shaoguo Liu
    • 1
  • Haibo Wang
    • 2
  • Jue Wang
    • 3
  • Sunghyun Cho
    • 3
  • Chunhong Pan
    • 1
  1. 1.NLPR, Institute of AutomationChinese Academy of SciencesBeijingChina
  2. 2.School of Control Science and EngineeringShandong UniversityJinanChina
  3. 3.Adobe ResearchSeattleUSA

Personalised recommendations