Macro 64-regions for uniform grids on GPU

Abstract

Uniform grids are a spatial subdivision acceleration structure well suited for ray tracing. They are known for their fast build times and ease of use, but suffer from slow traversals in the presence of empty space. To address this issue, we present macro 64-regions, a new GPU based approach for finding and storing empty volumes in an underlying uniform grid. This allows for fast traversals through regions that do not contain scene geometry. Further, unlike previous solutions to this problem, we do not store a hierarchical structure and therefore the traversal steps are simplified. Because macro 64-regions are dependent on an underlying grid, we also introduce an improvement in the grid construction process. Our method does not rely on sorting as previous methods do, but instead uses atomic operators to manage bookkeeping during the build. Using our proposed methods, we show a substantial improvement in build time, trace time, as well as an improvement in the consistency of rendering times for randomly generated views.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    The standard deviation is scaled down by 50 % for the purpose of readability in Fig. 8.

    Fig. 8
    figure8

    Primary ray casting time for uniform grid, micro 64-tree, and macro 64-regions accelerators for Conference Room scene. Margins around each line are 50 % of the standard deviation of 1,000 randomly generated views. Macro 64-regions exhibit the most consistent rendering times as grid density increases

References

  1. 1.

    Akenine-Möller, T.: Fast 3D triangle-box overlap testing. In: ACM SIGGRAPH 2005 Courses, p. 8. ACM, New York (2005)

  2. 2.

    Amanatides, J., Woo, A.: A fast voxel traversal algorithm for ray tracing. Eurographics 87, 3–10 (1987)

  3. 3.

    Devillers, O.: The macro-regions: an efficient space subdivision structure for ray tracing. Eurographics 89, 27–38 (1989)

    Google Scholar 

  4. 4.

    Fujimoto, A., Tanaka, T., Iwata, K.: Arts: accelerated ray-tracing system. IEEE Comput. Graph. Appl. 6(4), 16–26 (1986)

    Google Scholar 

  5. 5.

    Garanzha, K., Pantaleoni, J., McAllister, D.: Simpler and faster hlbvh with work queues. In: Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics, pp. 59–64. ACM, New York (2011)

  6. 6.

    Guntury, S., Narayanan, P.J.: Raytracing dynamic scenes on the GPU using grids. IEEE Trans. Visual. Comput. Graph. 18(1), 5–16 (2012)

    Google Scholar 

  7. 7.

    Hoberock, J., Bell, N.: Thrust: a parallel template library (2010). Version 1.7.0.

  8. 8.

    Jevans, D., Wyvill, B.: Adaptive voxel subdivision for ray tracing. Proc. Graph. Interf. 89, 164–172 (1989)

    Google Scholar 

  9. 9.

    Cleary, J.G., Wyvill, B.M., Birtwistle, G.M.: Design and analysis of a parallel ray tracing computer. Graph. Interf. 83, 33–38 (1983)

    Google Scholar 

  10. 10.

    Kalojanov, J., Billeter, M., Slusallek, P.: Two-level grids for ray tracing on gpus. Comput. Graph. Forum 30(2), 307–314 (2011)

    Google Scholar 

  11. 11.

    Kalojanov, J., Slusallek, P.: A parallel algorithm for construction of uniform grids. In: Proceedings of the Conference on High Performance Graphics 2009. HPG ’09, pp. 23–28. ACM, New York (2009)

  12. 12.

    Klimaszewski, K.S., Sederberg, T.W.: Faster ray tracing using adaptive grids. IEEE Comput. Graph. Appl. 17(1), 42–51 (1997)

    Google Scholar 

  13. 13.

    Lauterbach, C., Garland, M., Sengupta, S., Luebke, D., Manocha, D.: Fast bvh construction on gpus. In: Computer Graphics Forum, vol. 28, pp. 375–384. Wiley Online Library, New Jersey (2009)

  14. 14.

    Liu, X., Rokne, J.G.: A micro 64-tree structure for accelerating ray tracing on a gpu. In: Proceedings of the 2013 Graphics Interface Conference, GI ’13, pp. 165–172. Canadian Information Processing Society, Toronto (2013)

  15. 15.

    Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with cuda. Queue 6(2), 40–53 (2008)

    Article  Google Scholar 

  16. 16.

    Pharr, M., Humphreys, G.: Physically Based Rendering, From Theory To Implementation, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco (2010)

    Google Scholar 

  17. 17.

    Santos, A., Teixeira, J.M., Farias, T., Teichrieb, V., Kelner, J.: Understanding the efficiency of \(kd\)-tree ray-traversal techniques over a gpgpu architecture. Intern. J. Paral. Progr. 40(3), 331–352 (2012)

    Article  Google Scholar 

  18. 18.

    Sengupta, S., Harris, M., Zhang, Y., Owens, J.D.: Scan primitives for gpu computing. In: Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware. GH ’07, pp. 97–106. Eurographics Association, Aire-la-Ville (2007)

  19. 19.

    Snyder, J.M., Barr, A.H.: Ray tracing complex models containing surface tessellations. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive chniques. SIGGRAPH ’87, pp. 119–128. ACM, New York (1987)

  20. 20.

    Wald, I., Ize, T., Kensler, A., Knoll, A., Parker, S.G.: Ray tracing animated scenes using coherent grid traversal. In: ACM SIGGRAPH 2006 Papers. SIGGRAPH ’06, pp. 485–493. ACM, New York (2006)

  21. 21.

    Wald, I., Mark, W.R., Günther, J., Boulos, S., Ize, T., Hunt, W., Parker, S.G., Shirley, P.: State of the art in ray tracing animated scenes. Comput. Graph. Forum 28(6), 1691–1722 (2009)

    Article  Google Scholar 

  22. 22.

    Zhou, K., Hou, Q., Wang, R., Guo, B.: Real-time \(kd\)-tree construction on graphics hardware. ACM Trans. Graph. 27(5), 126:1–126:11 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge NSF (Award Number IIS-1064427) for providing partial funding for this research. We also wish to thank Anat Grynberg and Greg Ward for the Conference Room model, Frank Meinl and Marko Dabrovic for the Crytek Sponza model, and Marko Dabrovic, again, for the Sibenik Cathedral model.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eugene M. Taranta II.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taranta, E.M., Pattanaik, S.N. Macro 64-regions for uniform grids on GPU. Vis Comput 30, 615–624 (2014). https://doi.org/10.1007/s00371-014-0974-x

Download citation

Keywords

  • Grid
  • Accelerator
  • Ray tracing
  • GPU