The Visual Computer

, Volume 30, Issue 6–8, pp 615–624 | Cite as

Macro 64-regions for uniform grids on GPU

  • Eugene M. TarantaIIEmail author
  • Sumanta N. Pattanaik
Original Article


Uniform grids are a spatial subdivision acceleration structure well suited for ray tracing. They are known for their fast build times and ease of use, but suffer from slow traversals in the presence of empty space. To address this issue, we present macro 64-regions, a new GPU based approach for finding and storing empty volumes in an underlying uniform grid. This allows for fast traversals through regions that do not contain scene geometry. Further, unlike previous solutions to this problem, we do not store a hierarchical structure and therefore the traversal steps are simplified. Because macro 64-regions are dependent on an underlying grid, we also introduce an improvement in the grid construction process. Our method does not rely on sorting as previous methods do, but instead uses atomic operators to manage bookkeeping during the build. Using our proposed methods, we show a substantial improvement in build time, trace time, as well as an improvement in the consistency of rendering times for randomly generated views.


Grid Accelerator Ray tracing GPU 



We acknowledge NSF (Award Number IIS-1064427) for providing partial funding for this research. We also wish to thank Anat Grynberg and Greg Ward for the Conference Room model, Frank Meinl and Marko Dabrovic for the Crytek Sponza model, and Marko Dabrovic, again, for the Sibenik Cathedral model.


  1. 1.
    Akenine-Möller, T.: Fast 3D triangle-box overlap testing. In: ACM SIGGRAPH 2005 Courses, p. 8. ACM, New York (2005)Google Scholar
  2. 2.
    Amanatides, J., Woo, A.: A fast voxel traversal algorithm for ray tracing. Eurographics 87, 3–10 (1987)Google Scholar
  3. 3.
    Devillers, O.: The macro-regions: an efficient space subdivision structure for ray tracing. Eurographics 89, 27–38 (1989)Google Scholar
  4. 4.
    Fujimoto, A., Tanaka, T., Iwata, K.: Arts: accelerated ray-tracing system. IEEE Comput. Graph. Appl. 6(4), 16–26 (1986)Google Scholar
  5. 5.
    Garanzha, K., Pantaleoni, J., McAllister, D.: Simpler and faster hlbvh with work queues. In: Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics, pp. 59–64. ACM, New York (2011)Google Scholar
  6. 6.
    Guntury, S., Narayanan, P.J.: Raytracing dynamic scenes on the GPU using grids. IEEE Trans. Visual. Comput. Graph. 18(1), 5–16 (2012)Google Scholar
  7. 7.
    Hoberock, J., Bell, N.: Thrust: a parallel template library (2010). Version 1.7.0.Google Scholar
  8. 8.
    Jevans, D., Wyvill, B.: Adaptive voxel subdivision for ray tracing. Proc. Graph. Interf. 89, 164–172 (1989)Google Scholar
  9. 9.
    Cleary, J.G., Wyvill, B.M., Birtwistle, G.M.: Design and analysis of a parallel ray tracing computer. Graph. Interf. 83, 33–38 (1983)Google Scholar
  10. 10.
    Kalojanov, J., Billeter, M., Slusallek, P.: Two-level grids for ray tracing on gpus. Comput. Graph. Forum 30(2), 307–314 (2011)Google Scholar
  11. 11.
    Kalojanov, J., Slusallek, P.: A parallel algorithm for construction of uniform grids. In: Proceedings of the Conference on High Performance Graphics 2009. HPG ’09, pp. 23–28. ACM, New York (2009)Google Scholar
  12. 12.
    Klimaszewski, K.S., Sederberg, T.W.: Faster ray tracing using adaptive grids. IEEE Comput. Graph. Appl. 17(1), 42–51 (1997)Google Scholar
  13. 13.
    Lauterbach, C., Garland, M., Sengupta, S., Luebke, D., Manocha, D.: Fast bvh construction on gpus. In: Computer Graphics Forum, vol. 28, pp. 375–384. Wiley Online Library, New Jersey (2009)Google Scholar
  14. 14.
    Liu, X., Rokne, J.G.: A micro 64-tree structure for accelerating ray tracing on a gpu. In: Proceedings of the 2013 Graphics Interface Conference, GI ’13, pp. 165–172. Canadian Information Processing Society, Toronto (2013)Google Scholar
  15. 15.
    Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with cuda. Queue 6(2), 40–53 (2008)CrossRefGoogle Scholar
  16. 16.
    Pharr, M., Humphreys, G.: Physically Based Rendering, From Theory To Implementation, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco (2010)Google Scholar
  17. 17.
    Santos, A., Teixeira, J.M., Farias, T., Teichrieb, V., Kelner, J.: Understanding the efficiency of \(kd\)-tree ray-traversal techniques over a gpgpu architecture. Intern. J. Paral. Progr. 40(3), 331–352 (2012)CrossRefGoogle Scholar
  18. 18.
    Sengupta, S., Harris, M., Zhang, Y., Owens, J.D.: Scan primitives for gpu computing. In: Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware. GH ’07, pp. 97–106. Eurographics Association, Aire-la-Ville (2007)Google Scholar
  19. 19.
    Snyder, J.M., Barr, A.H.: Ray tracing complex models containing surface tessellations. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive chniques. SIGGRAPH ’87, pp. 119–128. ACM, New York (1987)Google Scholar
  20. 20.
    Wald, I., Ize, T., Kensler, A., Knoll, A., Parker, S.G.: Ray tracing animated scenes using coherent grid traversal. In: ACM SIGGRAPH 2006 Papers. SIGGRAPH ’06, pp. 485–493. ACM, New York (2006) Google Scholar
  21. 21.
    Wald, I., Mark, W.R., Günther, J., Boulos, S., Ize, T., Hunt, W., Parker, S.G., Shirley, P.: State of the art in ray tracing animated scenes. Comput. Graph. Forum 28(6), 1691–1722 (2009)CrossRefGoogle Scholar
  22. 22.
    Zhou, K., Hou, Q., Wang, R., Guo, B.: Real-time \(kd\)-tree construction on graphics hardware. ACM Trans. Graph. 27(5), 126:1–126:11 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.University of Central FloridaOrlando, FLUSA

Personalised recommendations