Skip to main content
Log in

Fast high-quality non-blind deconvolution using sparse adaptive priors

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present an efficient approach for high-quality non-blind deconvolution based on the use of sparse adaptive priors. Its regularization term enforces preservation of strong edges while removing noise. We model the image-prior deconvolution problem as a linear system, which is solved in the frequency domain. This clean formulation lends to a simple and efficient implementation. We demonstrate its effectiveness by performing an extensive comparison with existing non-blind deconvolution methods, and by using it to deblur photographs degraded by camera shake. Our experiments show that our solution is faster and its results tend to have higher peak signal-to-noise ratio than the state-of-the-art techniques. Thus, it provides an attractive alternative to perform high-quality non-blind deconvolution of large images, as well as to be used as the final step of blind-deconvolution algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Banham, M., Katsaggelos, A.: Digital image restoration. Signal Process. Mag. IEEE 14(2), 4–41 (1997)

    Google Scholar 

  2. Ben-Ezra, M., Nayar, S.: Motion-based Motion Deblurring. IEEE TPAMI 26(6), 689–698 (2004)

    Article  Google Scholar 

  3. Bonesky, T.: Morozov’s discrepancy principle and tikhonov-type functionals. Inverse Probl. 25(1), 015015 (2009)

    Article  MathSciNet  Google Scholar 

  4. Cai, J.-F., Ji, H., Liu, C., Shen, Z.: Blind motion deblurring from a single image using sparse approximation. In: CVPR 2009. pp 104–111 (2009)

  5. Campisi, P., Egiazarian, K.: Blind Image Deconvolution: theory and Applications. CRC Press, Boca Raton (2007)

  6. Cho, S., Lee, S.: Fast motion deblurring. ACM Trans. Graph. 5(28), 145 (2009). (1–145:8)

    Google Scholar 

  7. Cho, S., Wang, J., Lee, S.: Handling outliers in non-blind image deconvolution. ICCV 2011. pp 1–8 (2011)

  8. Cho, T.S., Zitnick, C.L., Joshi, N., Kang, S.B., Szeliski, R., Freeman, W.T.: Image restoration by matching gradient distributions. IEEE TPAMI 34(4), 683–694 (2012)

    Article  Google Scholar 

  9. Engl, H., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  10. Gastal, E.S.L., Oliveira, M.M.: Domain transform for edge-aware image and video processing. ACM TOG 30(4), 69 (2011). (1–12, SIGGRAPH 2011)

    Article  Google Scholar 

  11. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. ACM TOG 25, 787–794 (2006)

    Article  Google Scholar 

  12. Fortunato, H.E., Oliveira, M.M.: Coding depth through mask structure. Computer graphics forum. In: Proceedings of Eurographics, vol. 31(2), pp. 459–468 (2012)

  13. Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regularization. Image Process. IEEE Trans. 4(7), 932–946 (1995)

  14. Joshi, N., Zitnick, C., Szeliski, R., Kriegman, D.: Image deblurring and denoising using color priors. In: CVPR 2009, pp. 1550–1557 (2009)

  15. Kodak. Kodak Lossless True Color Image Suite. http://r0k.us/graphics/kodak/. Accessed Jan 2013

  16. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. Adv. Neural Inf. Process. Syst. 22, 1033–1041 (2009)

    Google Scholar 

  17. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. ACM TOG, vol. 26 (article 70) (2007)

  18. Levin, A., Sand, P., Cho, T.S., Durand, F., Freeman, W.T.: Motion-invariant photography. ACM Trans. Graph. 27, 71 (2008). (1–71:9)

    Article  Google Scholar 

  19. Levin, A., Weiss, Y., Durand, F., Freeman, W.: Efficient marginal likelihood optimization in blind deconvolution. In: CVPR 2011, pp. 2657–2664 (2011)

  20. Liu, R., Jia, J.: Reducing boundary artifacts in image deconvolution. In: ICIP’08, pp. 505–508 (2008)

  21. Lucy, L.B.: An iterative technique for the rectification of observed distributions. Astron. J. 79, 745 (1974)

    Article  Google Scholar 

  22. Shan, Q., Xiong, W., Jia, J.: Rotational motion deblurring of a rigid object from a single image. In: ICCV 2007, pp. 1–8 (2007)

  23. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM TOG 27 (2008)

  24. Sibarita, J.B.: Deconvolution microscopy. Adv. Biochem. Eng. Biotechnol. 95, 201–243 (2005)

    Google Scholar 

  25. Starck, J.L., Pantin, E., Murtagh, F.: Deconvolution in astronomy: a review. Publications of the Astronomical Society of the Pacific (October), pp. 1051–1069 (2002)

  26. Tai, Y.-W., Chen, X., Kim, S., Kim, S.J., Li, F., Yang, J., Yu, J., Matsushita, Y., Brown, M.S.: Nonlinear camera response functions and image deblurring: theoretical analysis and practice. IEEE TPAMI 2013 35, 2498–2512 (2013)

    Google Scholar 

  27. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Wiley, New York (1977)

    MATH  Google Scholar 

  28. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. ICCV ’98, pp. 839–846 (1998)

  29. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)

  30. Yuan, L., Sun, J., Quan, L., Shum, H.-Y.: Progressive inter-scale and intra-scale non-blind image deconvolution. ACM Trans. Graph. 27(3), 74 (2008). (1–74:10)

    Google Scholar 

  31. Xu, L., Jia, J.: Two-phase Kernel Estimation for Robust Motion Deblurring ECCV’10, pp. 157–170 (2010)

  32. Xu, L., Zheng, S., Jia, J.: Unnatural L0 Sparse Representation for Natural Image Deblurring CVPR, pp. 1107–1114 (2013)

  33. Zhou, C., Nayar, S.K.: What are good apertures for defocus deblurring? In: ICCP, pp. 1–8 (2009)

Download references

Acknowledgments

This work was sponsored by CNPq (Grants 482271/2012-4 and 308936/2010-8). We thank the authors of the compared techniques for making their code available, and Shan et al. for providing the photographs and kernels shown in Figs. 9 and10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio E. Fortunato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortunato, H.E., Oliveira, M.M. Fast high-quality non-blind deconvolution using sparse adaptive priors. Vis Comput 30, 661–671 (2014). https://doi.org/10.1007/s00371-014-0966-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-014-0966-x

Keywords

Navigation