Advertisement

The Visual Computer

, Volume 30, Issue 6–8, pp 717–727 | Cite as

Real-time rendering of glossy materials with regular sampling

  • Christian LukschEmail author
  • Robert F. Tobler
  • Thomas Mühlbacher
  • Michael Schwärzler
  • Michael Wimmer
Original Article

Abstract

Rendering view-dependent, glossy surfaces to increase the realism in real-time applications is a computationally complex task, that can only be performed by applying some approximations—especially when immediate changes in the scene in terms of material settings and object placement are a necessity. The use of environment maps is a common approach to this problem, but implicates performance problems due to costly pre-filtering steps or expensive sampling. We, therefore, introduce a regular sampling scheme for environment maps that relies on an efficient MIP-map-based filtering step, and minimizes the number of necessary samples for creating a convincing real-time rendering of glossy BRDF materials.

Keywords

Real-time rendering BRDF materials Sampling Environment maps 

Notes

Acknowledgments

The competence center VRVis is funded by BMVIT, BMWFJ, and City of Vienna (ZIT) within the scope of COMET - Competence Centers for Excellent Technologies. The program COMET is managed by FFG.

Supplementary material

Supplementary material 1 (mp4 128221 KB)

References

  1. 1.
    Colbert, M., Krivánek, J.: GPU-based importance sampling. GPU Gems 3, 459 (2007)Google Scholar
  2. 2.
    Kurt, M., Szirmay-Kalos, L., Křivánek, J.: An anisotropic BRDF model for fitting and Monte Carlo rendering. SIGGRAPH Comput. Graph. 44(1), 3:1–3:15 (2010)Google Scholar
  3. 3.
    Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment maps. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 497–500. ACM, New York (2001)Google Scholar
  4. 4.
    Kautz, J., Sloan, P.P., Snyder, J.: Fast, arbitrary BRDF shading for low-frequency lighting using spherical harmonics. In: Proceedings of the 13th Eurographics Workshop on Rendering, pp. 291–296. EG, Saarbrücken (2002)Google Scholar
  5. 5.
    Ramamoorthi, R., Hanrahan, P.: Frequency space environment map rendering. In: Proceedings of ACM Transactions on Graphics (TOG), vol. 21, pp. 517–526. ACM, New York, (2002)Google Scholar
  6. 6.
    Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: Proceedings of ACM Transactions on Graphics (TOG), vol. 21, pp. 527–536. ACM, New York (2002)Google Scholar
  7. 7.
    Ng, R., Ramamoorthi, R., Hanrahan, P.: Triple product wavelet integrals for all-frequency relighting. In: Proceedings of ACM Transactions on Graphics (TOG), vol. 23, pp. 477–487. ACM, New York (2004)Google Scholar
  8. 8.
    Wang, R., Tran, J., Luebke, D.: All-frequency relighting of non-diffuse objects using separable BRDF approximation. In: Proceedings of EG Symposium on Rendering, pp. 345–354 (2004)Google Scholar
  9. 9.
    Liu, X., Sloan, P.P., Shum, H.Y., Snyder, J.: All-frequency precomputed radiance transfer for glossy objects. In: Proceedings of Eurographics Symposium on Rendering, vol. 1. EG, Saarbrücken (2004)Google Scholar
  10. 10.
    Tsai, Y.T., Shih, Z.C.: All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. In: Proceedings of ACM Transactions on Graphics (TOG), vol. 25, pp. 967–976. ACM, New York (2006)Google Scholar
  11. 11.
    Kautz, J., Vázquez, P.P., Heidrich, W., Seidel, H.P.: A unified approach to prefiltered environment maps. In: Proceedings of EG Workshop on Rendering, vol. 6. Springer, Berlin (2000)Google Scholar
  12. 12.
    McAllister, D.K., Lastra, A., Heidrich, W.: Efficient rendering of spatial bi-directional reflectance distribution functions. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, pp. 79–88. EG, Saarbrücken (2002)Google Scholar
  13. 13.
    Ben-Artzi, A., Overbeck, R., Ramamoorthi, R.: Real-time BRDF editing in complex lighting. In: Proceedings of ACM Transactions on Graphics (TOG), vol. 25, pp. 945–954. ACM, New York (2006)Google Scholar
  14. 14.
    Sun, X., Zhou, K., Chen, Y., Lin, S., Shi, J., Guo, B.: Interactive relighting with dynamic BRDFs. ACM Trans. Gr. (TOG) 26(3), 27 (2007)CrossRefGoogle Scholar
  15. 15.
    Ritschel, T., Engelhardt, T., Grosch, T., Seidel, H.P., Kautz, J., Dachsbacher, C.: Micro-rendering for scalable, parallel final gathering. In: Proceedings of ACM Transactions on Graphics (TOG), vol. 28, p. 132. ACM, New York (2009)Google Scholar
  16. 16.
    Scherzer, D., Nguyen, C.H., Ritschel, T., Seidel, H.P.: Pre-convolved radiance caching. In: Proceedings of Computer Graphics Forum, vol. 31, pp. 1391–1397. ACM, New York (2012)Google Scholar
  17. 17.
    Diefenbach, P.J., Badlert, N.I.: Multi-pass pipeline rendering: realism for dynamic environments. In: Proceedings of Symposium on Interactive 3D Graphics, pp. 59–70 (1997)Google Scholar
  18. 18.
    Fuhrmann, A.L., Tobler, R.F., Maierhofer, S.: Real-time glossy reflections on planar surfaces. In: Proceedings of the 3rd International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa, pp. 87–91. ACM, New York (2004)Google Scholar
  19. 19.
    Robison, A., Shirley, P.: Image space gathering. In: HPG ’09 Proceedings of the Conference on High Performance Graphics 2009, pp. 91–98. ACM, New York (2009)Google Scholar
  20. 20.
    Křivánek, J., Colbert, M.: Real-time shading with filtered importance sampling. In: Proceedings of Computer Graphics Forum, vol. 27, pp. 1147–1154. ACM, New York (2008)Google Scholar
  21. 21.
    Cook, R.L., Torrance, K.E.: A reflectance model for computer graphics. ACM Trans. Gr. (TOG) 1(1), 7 (1982)CrossRefGoogle Scholar
  22. 22.
    Torrance, K.E., Sparrow, E.M.: Theory for off-specular reflection from roughened surfaces. JOSA 57(9), 1105 (1967)CrossRefGoogle Scholar
  23. 23.
    He, X.D., Torrance, K.E., Sillion, F.X., Greenberg, D.P.: A comprehensive physical model for light reflection. In: ACM SIGGRAPH Computer Graphics, vol. 25, pp. 175–186, ACM, New York (1991)Google Scholar
  24. 24.
    Phong, B.T.: Illumination for computer generated pictures. Commun. ACM 18(6), 311 (1975)CrossRefGoogle Scholar
  25. 25.
    Ward, G.J.: Measuring and modeling anisotropic reflection. In: Proceedings of ACM SIGGRAPH Computer Graphics, vol. 26, pp. 265–272. ACM, New York (1992)Google Scholar
  26. 26.
    Schlick, C.: An Inexpensive BRDF Model for Physically-Based Rendering in Computer Graphics Forum, vol. 13, pp. 233–246. ACM, New York (2003)Google Scholar
  27. 27.
    Blinn, J.F., Newell, M.E.: Texture and reflection in computer generated images. Commun. ACM 19(10), 542 (1976)CrossRefGoogle Scholar
  28. 28.
    Adelson, E.H.: Image data compression with the Laplacian pyramid. In: Proceedings of the Conference on Pattern Recognition and Image Processing, pp. 218–223. IEEE Computer Society Press, Los Alamitos (1981)Google Scholar
  29. 29.
    Szirmay-Kalos, L.: Monte Carlo Methods in Global Illumination-Photo-Realistic Rendering with Randomization, VDM, Saarbrücken (2008)Google Scholar
  30. 30.
    Walter, B.: Notes on the Ward BRDF. In: Proceedings of Technical Report PCG-05–06, Cornell Program of Computer Graphics (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Christian Luksch
    • 1
    Email author
  • Robert F. Tobler
    • 1
  • Thomas Mühlbacher
    • 1
  • Michael Schwärzler
    • 1
  • Michael Wimmer
    • 2
  1. 1.VRVis Research CenterWienAustria
  2. 2.Institute of Computer Graphics and AlgorithmsVienna University of TechnologyWienAustria

Personalised recommendations