Adaptive motion synthesis for virtual characters: a survey

Abstract

Character motion synthesis is the process of artificially generating natural motion for a virtual character. In film, motion synthesis can be used to generate difficult or dangerous stunts without putting performers at risk. In computer games and virtual reality, motion synthesis enriches the player or participant experience by allowing for unscripted and emergent character behavior. In each of these applications the ability to adapt to changes to environmental conditions or to the character in a smooth and natural manner, while still conforming with user-specified constraints, determines the utility of a method to animators and industry practitioners. This focus on adaptation capability distinguishes our survey from other reviews which focus on general technology developments. Three main methodologies (example-based; simulation-based and hybrid) are summarised and evaluated using compound metrics: adaptivity, naturalness and controllability. By assessing existing techniques according to this classification we are able to determine how well a method corresponds to users’ expectations. We discuss optimization strategies commonly used in motion synthesis literature, and also contemporary perspectives from biology which give us a deeper insight into this problem. We also present observations and reflections from industry practitioners to reveal the operational constraints of character motion synthesis techniques. Our discussion and review presents a unique insight into the subject, and provide essential guidance when selecting appropriate methods to design an adaptive motion controller.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    Industry experience from author David Greer.

References

  1. 1.

    Abe, Y., da Silva, M., Popović, J.: Multiobjective control with frictional contacts. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’07, pp. 249–258. Eurographics Association, Aire-la-Ville, Switzerland (2007)

  2. 2.

    Adam, A.: Identifying humans by their walk and generating new motions using hidden markov models. In: The University of British Columbia, Topics in AI (2008)

  3. 3.

    Al-Asqhar, R.A., Komura, T., Choi, M.G.: Relationship descriptors for interactive motion adaptation. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’13, pp. 45–53. ACM, New York (2013)

  4. 4.

    Al Borno, M., de Lasa, M., Hertzmann, A.: Trajectory optimization for full-body movements with complex contacts. IEEE Trans. Vis. Comput. Graph. 19(8), 1405–1414 (2013)

    Article  Google Scholar 

  5. 5.

    Alexander, R.: Optima for Animals. Princeton University Press, Princeton (1996)

    Google Scholar 

  6. 6.

    Autodesk: The new art of virtual moviemaking. Tech. rep. (2008)

  7. 7.

    Bai, Y., Siu, K., Liu, C.K.: Synthesis of concurrent object manipulation tasks. ACM Trans. Graph. 31(6), 156:1–156:9 (2012)

  8. 8.

    Carvalho, S.R., Boulic, R., Vidal, C.A., Thalmann, D.: Latent motion spaces for full-body motion editing. Vis. Comput. 29(3), 171–188 (2013)

    Article  Google Scholar 

  9. 9.

    Chai, J., Hodgins, J.K.: Constraint-based motion optimization using a statistical dynamic model. In: ACM SIGGRAPH 2007 papers, pp. 8 (2007)

  10. 10.

    Choi, K.J., Ko, H.S.: On-line motion retargetting. In: Proceedings of the Seventh Pacific Conference on Computer Graphics and Applications, 1999, pp. 32–42 (1999)

  11. 11.

    Choi, M.G., Kim, M., Hyun, K.L., Lee, J.: Deformable motion: squeezing into cluttered environments. Comput. Graph. Forum 30(2), 445–453 (2011)

    Article  Google Scholar 

  12. 12.

    Coros, S., Beaudoin, P., van de Panne, M.: Robust task-based control policies for physics-based characters. In: ACM SIGGRAPH Asia 2009 papers, SIGGRAPH Asia ’09, pp. 170:1–170:9. ACM, New York (2009)

  13. 13.

    Coros, S., Beaudoin, P., van de Panne, M.: Generalized biped walking control. ACM Trans. Graph. (TOG) 29(4), 130 (2010)

    Article  Google Scholar 

  14. 14.

    Coros, S., Beaudoin, P., Yin, K.K., van de Pann, M.: Synthesis of constrained walking skills. ACM Trans. Graph. 27, 113:1–113:9 (2008)

  15. 15.

    Coros, S., Karpathy, A., Jones, B., Reveret, L., van de Panne, M.: Locomotion skills for simulated quadrupeds. In: ACM SIGGRAPH 2011 papers, SIGGRAPH ’11, pp. 59:1–59:12. ACM, New York (2011)

  16. 16.

    Faloutsos, P., van de Panne, M., Terzopoulos, D.: Composable controllers for physics-based character animation. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’01, pp. 251–260. ACM, New York (2001)

  17. 17.

    Fang, A.C., Pollard, N.S.: Efficient synthesis of physically valid human motion. ACM Trans. Graph. (TOG) 22(3), 417–426 (2003)

    Article  Google Scholar 

  18. 18.

    Feldman, A.G.: Once more on the equilibrium-point hypothesis(\(\lambda \) model) for motor control. J. Mot. Behav. 18(1), 17–54 (1986)

    Article  Google Scholar 

  19. 19.

    Feng, A.W., Xu, Y., Shapiro, A.: An example-based motion synthesis technique for locomotion and object manipulation. In: Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. I3D ’12, pp. 95–102. ACM, New York (2012)

  20. 20.

    Geijtenbeek, T., van de Panne, M., van der Stappen, A.F.: Flexible muscle-based locomotion for bipedal creatures. ACM Trans. Graph. (TOG) 32(6), 206 (2013)

    Article  Google Scholar 

  21. 21.

    Geijtenbeek, T., Pronost, N.: Interactive character animation using simulated physics: a state-of-the-art review. Comp. Graph. Forum 31(8), 2492–2515 (2012)

    Article  Google Scholar 

  22. 22.

    Ghahramani, Z.: An introduction to hidden markov models and bayesian networks. Int. J. Pattern Recognit. Artif. Intell. 15(01), 9–42 (2001)

    Article  Google Scholar 

  23. 23.

    Gleicher, M.: Retargetting motion to new characters. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 42 (1998)

  24. 24.

    Grochow, K., Martin, S.L., Hertzmann, A., Popović, Z.: Style-based inverse kinematics. ACM Trans. Graph. (TOG) 23(3), 522–531 (2004)

    Article  Google Scholar 

  25. 25.

    Guo, S., Chang, J., Cao, Y., Zhang, J.: A novel locomotion synthesis and optimisation framework for insects. Comput. Graph. 38, 78–85 (2014)

    Article  Google Scholar 

  26. 26.

    Hecker, C., Raabe, B., Enslow, R.W., DeWeese, J., Maynard, J., van Prooijen, K.: Real-time motion retargeting to highly varied user-created morphologies. ACM Trans. Graph. (TOG) 27(3), 1–11 (2008)

    Article  Google Scholar 

  27. 27.

    Hertzmann, A., Zordan, V.: Physics-based characters. Comput. Graph. Appl. IEEE 31(4), 20–21 (2011)

    Article  Google Scholar 

  28. 28.

    Herzeg, I.: Crysis2: Getting more interactivity out of animation data. Tech. rep., Game Developers Conference (2011)

  29. 29.

    Ho, E.S.L., Komura, T., Tai, C.L.: Spatial relationship preserving character motion adaptation. ACM Trans. Graph. 29(4), 1–8 (2010)

    Article  Google Scholar 

  30. 30.

    Ikemoto, L., Arikan, O., Forsyth, D.: Knowing when to put your foot down. In: Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games. I3D ’06, pp. 49–53. ACM, New York (2006)

  31. 31.

    Jain, S., Liu, C.K.: Interactive synthesis of human-object interaction. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’09, pp. 47–53. ACM, New York (2009)

  32. 32.

    Jain, S., Liu, C.K.: Controlling physics-based characters using soft contacts. ACM Trans. Graph. (SIGGRAPH Asia) 30, 163:1–163:10 (2011)

  33. 33.

    Jain, S., Ye, Y., Liu, C.K.: Optimization-based interactive motion synthesis. ACM Trans. Graph. 28, 10:1–10:12 (2009)

  34. 34.

    Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. ACM Trans. Graph. 21, 473–482 (2002)

    Article  Google Scholar 

  35. 35.

    Kulpa, R., Multon, F., Arnaldi, B.: Morphology-independent representation of motions for interactive human-like animation. In: Computer Graphics Forum, vol. 24, pp. 343–351 (2005)

  36. 36.

    de Lasa, M., Mordatch, I., Hertzmann, A.: Feature-based locomotion controllers. ACM Trans. Graph. (TOG) 29(4), 131 (2010)

    Google Scholar 

  37. 37.

    Latash, M.: Neurophysiological Basis of Movement. Human Kinetics Publishers, Champaign (2008)

    Google Scholar 

  38. 38.

    Lau, M., Bar-Joseph, Z., Kuffner, J.: Modeling spatial and temporal variation in motion data. ACM Trans. Graph. (TOG) 28(5), 1–10 (2009)

    Article  Google Scholar 

  39. 39.

    Lee, J., Shin, S.Y.: A hierarchical approach to interactive motion editing for human-like figures. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 48 (1999)

  40. 40.

    Lee, Y., Kim, S., Lee, J.: Data-driven biped control. ACM Trans. Graph. 29, 129:1–129:8 (2010)

  41. 41.

    Liu, C.K., Popović, Z.: Synthesis of complex dynamic character motion from simple animations. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques—SIGGRAPH ’02, pp. 408. San Antonio, Texas (2002)

  42. 42.

    Liu, F., Southern, R., Guo, S., Yang, X., Zhang, J.: Motion adaptation with motor invariant theory. IEEE Trans. Cybern. 43(3), 1131–1145 (2013)

    Article  Google Scholar 

  43. 43.

    Liu, L., Yin, K., van de Panne, M., Guo, B.: Terrain runner: control, parameterization, composition, and planning for highly dynamic motions. ACM Trans. Graph. 31(6), 154:1–154:10 (2012)

  44. 44.

    Ma, W., Xia, S., Hodgins, J., Yang, X., Li, C., Wang, Z.: Modeling style and variation in human motion. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 21–30. Eurographics Association (2010)

  45. 45.

    Macchietto, A., Zordan, V., Shelton, C.R.: Momentum control for balance. ACM Trans. Graph. 28, 80:1–80:8 (2009)

  46. 46.

    McIntyre, J., Zago, M., Berthoz, A., Lacquaniti, F., et al.: Does the brain model newton’s laws? Nat. Neurosci. 4(7), 693–694 (2001)

    Article  Google Scholar 

  47. 47.

    Min, J., Chen, Y.L., Chai, J.: Interactive generation of human animation with deformable motion models. ACM Trans. Graph. 29, 9:1–9:12 (2009)

  48. 48.

    Monzani, J.S., Baerlocher, P., Boulic, R., Thalmann, D.: Using an intermediate skeleton and inverse kinematics for motion retargeting. In: Computer Graphics Forum, vol. 19, pp. 11–19 (2000)

  49. 49.

    Mordatch, I., de Lasa, M., Hertzmann, A.: Robust physics-based locomotion using low-dimensional planning. ACM Trans. Graph. 29, 71:1–71:8 (2010)

  50. 50.

    Muico, U., Popović, J., Popović, Z.: Composite control of physically simulated characters. ACM Trans. Graph. 30, 16:1–16:11 (2011)

  51. 51.

    Mukai, T., Kuriyama, S.: Geostatistical motion interpolation. ACM Trans. Graph. 24, 1062–1070 (2005)

    Article  Google Scholar 

  52. 52.

    Pejsa, T., Pandzic, I.: State of the art in example-based motion synthesis for virtual characters in interactive applications. Comput. Graph. Forum 29(1), 202–226 (2010)

    Article  Google Scholar 

  53. 53.

    Popović, Z., Witkin, A.: Physically based motion transformation. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques—SIGGRAPH ’99, pp. 11–20 (1999)

  54. 54.

    Pratt, J., Chew, C., Torres, A., Dilworth, P., Pratt, G.: Virtual model control: an intuitive approach for bipedal locomotion. Int. J. Robot. Res. 20(2), 129 (2001)

    Article  Google Scholar 

  55. 55.

    Pronost, N., Multon, F., Li, Q., Geng, W., Kulpa, R., Dumont, G.: Morphology independent motion retrieval and control. Int. J. 100, 1 (2009)

    Google Scholar 

  56. 56.

    Qinxin, Y.: A decision network framework for the behavioral animation of virtual humans. Ph.D. thesis, University of Toronto, Ontario, Toronto, Canada (2007)

  57. 57.

    Rother, D.D.: Bayesian network applications in molecular biology, computer graphics and computer vision. Ph.D. thesis, University of Minnesota, Minneapolis, MN, USA (2008)

  58. 58.

    Safonova, A., Hodgins, J.K., Pollard, N.S.: Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM SIGGRAPH 2004 Papers. SIGGRAPH ’04, pp. 514–521. ACM, New York (2004)

  59. 59.

    Seol, Y., O’Sullivan, C., Lee, J.: Creature features: Online motion puppetry for non-human characters. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’13, pp. 213–221. ACM, New York (2013)

  60. 60.

    Shadmehr, R., Mussa-Ivaldi, F.: Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 14(5), 3208–3224 (1994)

    Google Scholar 

  61. 61.

    Sharon, D., van de Panne, M.: Synthesis of controllers for stylized planar bipedal walking. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005, pp. 2387–2392 (2005)

  62. 62.

    Shin, H.J., Kovar, L., Gleicher, M.: Physical touch-up of human motions. In: Proceedings of the 11th Pacific Conference on Computer Graphics and Applications. PG ’03, pp. 194–203. IEEE Computer Society, Washington, DC (2003)

  63. 63.

    Shin, H.J., Lee, J., Shin, S.Y., Gleicher, M.: Computer puppetry: an importance-based approach. ACM Trans. Graph. 20, 67–94 (2001)

  64. 64.

    Shiratori, T., Coley, B., Cham, R., Hodgins, J.K.: Simulating balance recovery responses to trips based on biomechanical principles. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’09, pp. 37–46. ACM, New York (2009)

  65. 65.

    Shum, H.P.H., Komura, T., Yamazaki, S.: Simulating multiple character interactions with collaborative and adversarial goals. IEEE Trans. Vis. Comput. Graph. 99(PrePrints) (2010)

  66. 66.

    da Silva, M., Durand, F., Popović, J.: Linear bellman combination for control of character animation. ACM Trans. Graph. 28, pp. 82:1–82:10 (2009)

  67. 67.

    Sok, K.W., Kim, M., Lee, J.: Simulating biped behaviors from human motion data. In: ACM SIGGRAPH 2007 papers, SIGGRAPH ’07. ACM, New York (2007)

  68. 68.

    Sok, K.W., Yamane, K., Lee, J., Hodgins, J.: Editing dynamic human motions via momentum and force. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’10, pp. 11–20. Eurographics Association, Aire-la-Ville, Switzerland (2010)

  69. 69.

    Spong, M., Bullo, F.: Controlled symmetries and passive walking. IEEE Trans. Autom. Control 50(7), 1025–1031 (2005)

    Article  MathSciNet  Google Scholar 

  70. 70.

    Sun, H.C., Metaxas, D.N.: Automating gait generation. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’01, pp. 261–270. ACM, New York (2001)

  71. 71.

    Taesoo, K., Young-Sang, C., Sang, I.P., Sung Yong, S.: Two-character motion analysis and synthesis. IEEE Trans. Vis. Comput. Graph. 14, 707–720 (2008)

    Article  Google Scholar 

  72. 72.

    Taga, G., Yamaguchi, Y., Shimizu, H.: Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol. Cybern. 65(3), 147–159 (1991)

    Article  MATH  Google Scholar 

  73. 73.

    Tak, S., Ko, H.S.: A physically-based motion retargeting filter. ACM Trans. Graph. 24, 98–117 (2005)

    Article  Google Scholar 

  74. 74.

    Takahashi, C., Scheidt, R., Reinkensmeyer, D.: Impedance control and internal model formation when reaching in a randomly varying dynamical environment. J. Neurophysiol. 86(2), 1047 (2001)

    Google Scholar 

  75. 75.

    Tan, J., Gu, Y., Turk, G., Liu, C.K.: Articulated swimming creatures. In: ACM SIGGRAPH 2011 papers, SIGGRAPH ’11, pp. 58:1–58:12. ACM, New York (2011)

  76. 76.

    Tsai, Y.Y., Lin, W.C., Cheng, K., Lee, J., Lee, T.Y.: Real-time physics-based 3d biped character animation using an inverted pendulum model. IEEE Trans. Vis. Comput. Graph. 16(2), 325–337 (2010)

    Article  Google Scholar 

  77. 77.

    Wampler, K., Andersen, E., Herbst, E., Lee, Y., Popović, Z.: Character animation in two-player adversarial games. ACM Trans. Graph. 29, 26:1–26:13 (2010)

  78. 78.

    Wampler, K., Popović, Z.: Optimal gait and form for animal locomotion. In: ACM SIGGRAPH 2009 papers, SIGGRAPH ’09, pp. 60:1–60:8. ACM, New York (2009)

  79. 79.

    Wang, J., Fleet, D., Hertzmann, A.: Optimizing walking controllers for uncertain inputs and environments. ACM Trans. Graph. (TOG) 29(4), 73 (2010)

    Google Scholar 

  80. 80.

    Wang, J.M., Fleet, D.J., Hertzmann, A.: Optimizing walking controllers. In: ACM SIGGRAPH Asia 2009 papers, SIGGRAPH Asia ’09, pp. 168:1–168:8. ACM, New York (2009)

  81. 81.

    Wang, J.M., Hamner, S.R., Delp, S.L., Koltun, V.: Optimizing locomotion controllers using biologically-based actuators and objectives. ACM Trans. Graph. 31(4), 25:1–25:11 (2012)

  82. 82.

    Wei, X., Min, J., Chai, J.: Physically valid statistical models for human motion generation. ACM Trans. Graph. (TOG) 30(3), 19 (2011)

    Article  Google Scholar 

  83. 83.

    Williamson, M.: Robot arm control exploiting natural dynamics. Ph.D. thesis, Massachusetts Institute of Technology (1999)

  84. 84.

    Witkin, A., Kass, M.: Spacetime constraints. ACM SIGGRAPH 88. In: Computer Graphics (Conference Proceedings), pp. 159–168. ACM, New York (1988)

  85. 85.

    Wu, C.C., Zordan, V.: Goal-directed stepping with momentum control. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’10, pp. 113–118. Eurographics Association, Aire-la-Ville, Switzerland (2010)

  86. 86.

    Wu, J.c., Popović, Z.: Terrain-adaptive bipedal locomotion control. ACM Trans. Graph. 29, 72:1–72:10 (2010)

  87. 87.

    Yamane, K., Ariki, Y., Hodgins, J.: Animating non-humanoid characters with human motion data. In: Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer, Animation, pp. 169–178 (2010)

  88. 88.

    Yamane, K., Nakamura, Y.: Dynamics filter-concept and implementation of online motion generator for human figures. In: IEEE International Conference on Robotics and Automation, 2000. Proceedings. ICRA’00, vol. 1, pp. 688–694 (2000)

  89. 89.

    Ye, Y., Liu, C.K.: Animating responsive characters with dynamic constraints in near-unactuated coordinates. In: ACM SIGGRAPH Asia 2008 papers, SIGGRAPH Asia ’08, pp. 112:1–112:5. ACM, New York (2008)

  90. 90.

    Ye, Y., Liu, C.K.: Synthesis of responsive motion using a dynamic model. In: Computer Graphics Forum, vol. 29, pp. 555–562 (2010)

  91. 91.

    Ye, Y., Liu, C.K.: Synthesis of detailed hand manipulations using contact sampling. ACM Trans. Graph. 31(4), 41:1–41:10 (2012)

  92. 92.

    Yin, K., Coros, S., Beaudoin, P., van de Panne, M.: Continuation methods for adapting simulated skills. ACM Trans. Graph. 27, 81:1–81:7 (2008)

  93. 93.

    Yin, K., Loken, K., van de Panne, M.: Simbicon: simple biped locomotion control. In: ACM SIGGRAPH 2007 papers, SIGGRAPH ’07. ACM, New York (2007)

  94. 94.

    Zehr, E., Stein, R.: What functions do reflexes serve during human locomotion? Prog. Neurobiol. 58(2), 185–205 (1999)

    Article  Google Scholar 

  95. 95.

    Zordan, V., Macchietto, A., Medina, J., Soriano, M., Wu, C.C.: Interactive dynamic response for games. In: Proceedings of the 2007 ACM SIGGRAPH Symposium on Video Games. Sandbox ’07, pp. 9–14. ACM, New York (2007)

  96. 96.

    Zordan, V.B., Hodgins, J.K.: Motion capture-driven simulations that hit and react. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’02, pp. 89–96. ACM, New York (2002)

  97. 97.

    Zordan, V.B., Majkowska, A., Chiu, B., Fast, M.: Dynamic response for motion capture animation. ACM Trans. Graph. 24, 697–701 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the helpful comments from reviewers. Author Shihui Guo is sponsored by both China Scholarship Council and Bournemouth University. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement No. 612627-“AniNex”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shihui Guo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Southern, R., Chang, J. et al. Adaptive motion synthesis for virtual characters: a survey. Vis Comput 31, 497–512 (2015). https://doi.org/10.1007/s00371-014-0943-4

Download citation

Keywords

  • Computer animation
  • Character motion synthesis