The Visual Computer

, Volume 31, Issue 4, pp 391–406 | Cite as

Multi-scale region perpendicular local binary pattern: an effective feature for interest region description

  • Thao-Ngoc NguyenEmail author
  • Kazunori Miyata
Original Article


This paper proposes the perpendicular local binary pattern (PLBP) for efficiently describing textures in an interest region. Its novelty is two-fold: (1) the candidate generation scheme provides a set of patterns for each pixel, instead of conventionally assigning one pattern per pixel, and (2) an adaptive threshold based on the image contrast of a region is used. These modifications successfully enhance the robustness of PLBP to Gaussian noise as well as in near-uniform regions. We introduce the novel multi-scale region PLBP descriptor, which adopts the PLBP as its core feature. It defines multiple support regions from an interest point, sequentially performs ring-shaped and intensity order-based segmentations on each region, and pools PLBPs to corresponding segments. These steps are controlled easily by a set of parameters, thus offering high flexibility. Experimental results on challenging benchmarks, including three datasets of image matching and two datasets of object recognition, demonstrate the effectiveness of the proposed descriptor in handling common photometric and geometric transformations. It significantly improves the robustness, compared with current state-of-the-art descriptors, while maintaining a reasonable operational cost.


Local binary pattern Perpendicular  Intensity order Multi-support regions Interest regions Image matching Feature descriptor 

Supplementary material

371_2014_934_MOESM1_ESM.pdf (3.3 mb)
Supplementary material 1 (pdf 3337 KB)


  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Anbarjafari, G.: Face recognition using color local binary pattern from mutually independent color channels. EURASIP J. Image Video Process. 2013(1), 1–11 (2013)CrossRefGoogle Scholar
  5. 5.
    Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 74(1), 59–73 (2007)CrossRefGoogle Scholar
  6. 6.
    Chan, C.H., Goswami, B., Kittler, J., Christmas, W.: Local ordinal contrast pattern histograms for spatiotemporal, lip-based speaker authentication. IEEE Trans. Inf. Forensics Secur. 7(2), 602–612 (2012)CrossRefGoogle Scholar
  7. 7.
    Cordes, K., Rosenhahn, B., Ostermann, J.: High-resolution feature evaluation benchmark. In: The 15th International Conference on Computer Analysis of Images and Patterns (CAIP), Lecture Notes in Computer Science (LNCS), vol. 8047, pp. 327–334 (2013)Google Scholar
  8. 8.
    Fan, B., Wu, F., Hu, Z.: Rotationally invariant descriptors using intensity order pooling. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 2031–2045 (2012)CrossRefGoogle Scholar
  9. 9.
    Gupta, R., Mittal, A.: Smd: A locally stable monotonic change invariant feature descriptor. In: Proceedings of European Conference on Computer Vision, pp. 265–277 (2008)Google Scholar
  10. 10.
    Gupta, R., Patil, H., Mittal, A.: Robust order-based methods for feature description. In: Proceedings of Computer Vision and Pattern Recognition, pp. 334–341 (2010)Google Scholar
  11. 11.
    Heikkila, M., Pietikainen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006)CrossRefGoogle Scholar
  12. 12.
    Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recognit. 42(3), 425–436 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Ke, Y., Sukthankar, R.: Pca-sift: a more distinctive representation for local image descriptors. In: Proceedings of Computer Vision and Pattern Recognition, vol. 2, pp. 506–513 (2004)Google Scholar
  14. 14.
    Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1265–1278 (2005)CrossRefGoogle Scholar
  15. 15.
    Liao, S., Zhao, G., Kellokumpu, V., Pietikäinen, M., Li, S.Z.: Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes. In: Proceedings of Computer Vision and Pattern Recognition, pp. 1301–1306 (2010)Google Scholar
  16. 16.
    Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 79–116 (1998)CrossRefGoogle Scholar
  17. 17.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  18. 18.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of British Machine Vision Conference, vol. 2, pp. 384–393 (2002)Google Scholar
  19. 19.
    Mattivi, R., Shao, L.: Spatio-temporal dynamic texture descriptors for human motion recognition. In: Intelligent Video Event Analysis and Understanding. Studies in Computational Intelligence, vol. 332, pp. 69–91. Springer, Berlin (2010)Google Scholar
  20. 20.
    Michelson, A.: Studies in Optics. In: Dover books on astronomy. Dover Publications, New York (1995)Google Scholar
  21. 21.
    Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Computer Vision ECCV 2002. Lecture Notes in Computer Science, vol. 2350, pp. 128–142. Springer, Berlin (2002)Google Scholar
  22. 22.
    Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)CrossRefGoogle Scholar
  23. 23.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  24. 24.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. Int. J. Comput. Vis. 65(1–2), 43–72 (2005)CrossRefGoogle Scholar
  25. 25.
    Mortensen, E.N., Deng, H., Shapiro, L.: A sift descriptor with global context. In: Proceedings of Computer Vision and Pattern Recognition, pp. 184–190 (2005)Google Scholar
  26. 26.
    Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proceedings of Computer Vision and Pattern Recognition, vol. 2, pp. 2161–2168 (2006)Google Scholar
  27. 27.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multire solution gray-scale and rotation invariant texture classication with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)Google Scholar
  28. 28.
    Russell, B.C., Martin-Brualla, R., Butler, D.J., Seitz, S.M., Zettlemoyer, L.: 3D Wikipedia: Using online text to automatically label and navigate reconstructed geometry. ACM Trans. Graph. (SIGGRAPH, Asia 2013) 32(6) (2013)Google Scholar
  29. 29.
    Shi, W., Chen, S., Fang, L.: Local pixel class pattern based on fuzzy reasoning for feature. WSEAS Trans. Signal Process. 9(2), 31–40 (2013)Google Scholar
  30. 30.
    Song, T., Li, H.: Local polar dct features for image description. IEEE Signal Process. Lett. 20(1), 59–62 (2013)CrossRefGoogle Scholar
  31. 31.
    Takala, V., Ahonen, T., Pietikäinen, M.: Block-based methods for image retrieval using local binary patterns. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) Image Analysis. Lecture Notes in Computer Science, vol. 3540, pp. 882–891. Springer, Berlin (2005)Google Scholar
  32. 32.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Tang, F., Lim, S., Chang, N., Tao, H.: A novel feature descriptor invariant to complex brightness changes. In: Proceedings of Computer Vision and Pattern Recognition, pp. 2631–2638 (2009)Google Scholar
  34. 34.
    Tola, E., Lepetit, V., Fua, P.: Daisy: an efficient dense descriptor applied to wide baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)CrossRefGoogle Scholar
  35. 35.
    Tuytelaars, T., Gool, L.V.: Matching widely separated views based on affine invariant regions. Int. J. Comput. Vis. 59(1), 61–85 (2004)Google Scholar
  36. 36.
    Wang, Z., Fan, B., Wu, F.: Local intensity order pattern for feature description. In: Proceedings of International Conference on Computer Vision, pp. 603–610 (2011)Google Scholar
  37. 37.
    Winder, S., Brown, M.: Learning local image descriptors. In: Proceedings of Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar
  38. 38.
    Zambanini, S., Kampel, M.: A local image descriptor robust to illumination changes. In: Kmrinen, J.K., Koskela, M. (eds.) Image Analysis. Lecture Notes in Computer Science, vol. 7944, pp. 11–21. Springer, Berlin (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Knowledge ScienceJapan Advanced Institute of Science and TechnologyIshikawaJapan

Personalised recommendations