Skip to main content
Log in

An effective scheme for image texture classification based on binary local structure pattern

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Effectiveness of local binary pattern (LBP) features is well proven in the field of texture image classification and retrieval. This paper presents a more effective completed modeling of the LBP. The traditional LBP has a shortcoming that sometimes it may represent different structural patterns with same LBP code. In addition, LBP also lacks global information and is sensitive to noise. In this paper, the binary patterns generated using threshold as a summation of center pixel value and average local differences are proposed. The proposed local structure patterns (LSP) can more accurately classify different textural structures as they utilize both local and global information. The LSP can be combined with a simple LBP and center pixel pattern to give a completed local structure pattern (CLSP) to achieve higher classification accuracy. In order to make CLSP insensitive to noise, a robust local structure pattern (RLSP) is also proposed. The proposed scheme is tested over three representative texture databases viz. Outex, Curet, and UIUC. The experimental results indicate that the proposed method can achieve higher classification accuracy while being more robust to noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang, J.G., Tan, T.N.: Brief review of invariant texture analysis methods. Pattern Recognit. 35, 735–747 (2002)

    Article  MATH  Google Scholar 

  2. Davis, L.S.: Polarograms—a new tool for image texture analysis. Pattern Recognit. 13(3), 219–223 (1981)

    Article  Google Scholar 

  3. Duvernoy, J.: Optical digital processing of directional terrain textures invariant under translation, rotation, and change of scale. Appl. Opt. 23(6), 828–837 (1984)

    Article  Google Scholar 

  4. Goyal, R.K., Goh, W.L., Mital, D.P., et al.: Scale and rotation invariant texture analysis based on structural property. In: Proceedings of the 1995 IEEE International Conference on Industrial Electronics, Control, and Instrumentation, vol. 1–2, pp. 1290–1294 (1995)

    Google Scholar 

  5. Kashyap, R.L., Khotanzad, A.: A model-based method for rotation invariant texture classification. IEEE Trans. Pattern Anal. Mach. Intell. 8(4), 472–481 (1986)

    Article  Google Scholar 

  6. Eichmann, G., Kasparis, T.: Topologically invariant texture descriptors. Comput. Vis. Graph. Image Process. 41(3), 267–281 (1988)

    Article  Google Scholar 

  7. Cohen, F.S., Fan, Z.G., Patel, M.A.: Classification of rotated and scaled textured images using Gaussian Markov random field models. IEEE Trans. Pattern Anal. Mach. Intell. 13(2), 192–202 (1991)

    Article  Google Scholar 

  8. Chen, J.L., Kundu, A.: Rotation and gray scale transform invariant texture recognition using hidden Markov model. In: Icassp-92—1992 International Conference on Acoustics, Speech, and Signal Processing, vol. 1–5, pp. C69–C72 (1992)

    Google Scholar 

  9. Porter, R., Canagarajah, N.: Robust rotation invariant texture classification. In: 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. I–V, pp. 3157–3160 (1997)

    Chapter  Google Scholar 

  10. Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2032–2047 (2009)

    Article  Google Scholar 

  11. Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. Int. J. Comput. Vis. 62(1–2), 61–81 (2005)

    Article  Google Scholar 

  12. Varma, M., Zisserman, A.: Texture classification: are filter banks necessary? In: International Conference on Computer Vision and Pattern Recognition, pp. 691–698 (2003)

    Google Scholar 

  13. Xu, Y., Ji, H., Fermuller, C.: A projective invariant for texture. In: International Conference on Computer Vision and Pattern Recognition, pp. 1932–1939 (2006)

    Google Scholar 

  14. Xu, Y., Ji, H., Fermuller, C.: Viewpoint invariant texture description using fractal analysis. Int. J. Comput. Vis. 83(1), 85–100 (2009)

    Article  Google Scholar 

  15. Xu, Y., Yang, X., Lin, H., Ji, H.: A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid. In: International Conference on Computer Vision and Pattern Recognition, pp. 161–168 (2010)

    Google Scholar 

  16. Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1265–1278 (2005)

    Article  Google Scholar 

  17. Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: A comprehensive study. Int. J. Comput. Vis. 73(2), 213–238 (2007)

    Article  Google Scholar 

  18. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  19. Liao, S., Law, M.W.K., Chung, A.C.S.: Dominant local binary patterns for texture classification. IEEE Trans. Image Process. 18(5), 1107–1118 (2009)

    Article  MathSciNet  Google Scholar 

  20. Tan, X.Y., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)

    Article  MathSciNet  Google Scholar 

  21. Heikkila, M., Pietikainen, M., Schmid, C.: Description of interest regions with center-symmetric local binary patterns. Comput. Vis. Graph. Image Process. 4338, 58–69 (2006)

    Article  Google Scholar 

  22. Guo, Z.H., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)

    Article  MathSciNet  Google Scholar 

  23. Khellah, F.: Texture classification using dominant neighborhood structure. IEEE Trans. Image Process. 19(12) (2011)

  24. Murula, S., Maheshwari, R.P., Balasubramanium, R.: Local tetra pattern: A new feature descriptor for content-based image retrieval. IEEE Trans. Image Process. 21(5) (2012)

  25. Murula, S., Maheshwari, R.P., Balasubramanium, R.: Local maximum edge binary patterns: A new descriptor for image retrieval and object tracking. Signal Process. 92, 1467–1479 (2012)

    Article  Google Scholar 

  26. Zhao, Y., et al.: Completed robust local binary pattern for texture classification. Neurocomputing (2012). doi:10.1016/j.neucom.2012.10.017

    Google Scholar 

  27. Ojala, T., Maenpaa, T., Pietikainen, M., et al.: Outex—new framework for empirical evaluation of texture analysis algorithms. In: 16th International Conference on Pattern Recognition, Proceedings, vol. I, pp. 701–706 (2002)

    Google Scholar 

  28. Dana, K.J., Van Ginneken, B., Nayar, S.K., et al.: Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18(1), 1–34 (1999)

    Article  Google Scholar 

  29. Lazebnik, S., Schmid, C., Ponce, J.: A sparse texture representation using local affine regions. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1265–1278 (2005)

    Article  Google Scholar 

  30. Martens, G., Poppe, C., Lambert, P., Van deWalle, R.: Noise- and compression-robust biological features for texture classification. Vis. Comput. 26, 915–922 (2010)

    Article  Google Scholar 

  31. Sahami, S., Amirani, M.C.: Matrix based cyclic spectral estimator for fast and robust texture classification. Vis. Comput. (2012). doi:10.1007/s00371-012-0766-0

    Google Scholar 

Download references

Acknowledgements

The authors sincerely thank MVG, Zhao, and Guo for sharing the source codes of LBP, CRLBP, and CLBP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Tyagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrivastava, N., Tyagi, V. An effective scheme for image texture classification based on binary local structure pattern. Vis Comput 30, 1223–1232 (2014). https://doi.org/10.1007/s00371-013-0887-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0887-0

Keywords

Navigation