Skip to main content

Advertisement

Log in

Silhouette-based human action recognition using SAX-Shapes

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Human action recognition is an important problem in Computer Vision. Although most of the existing solutions provide good accuracy results, the methods are often overly complex and computationally expensive, hindering practical applications. In this regard, we introduce the combination of time-series representation for the silhouette and Symbolic Aggregate approXimation (SAX), which we refer to as SAX-Shapes, to address the problem of human action recognition. Given an action sequence, the extracted silhouettes of an actor from every frame are transformed into time series. Each of these time series is then efficiently converted into the symbolic vector: SAX. The set of all these SAX vectors (SAX-Shape) represents the action. We propose a rotation invariant distance function to be used by a random forest algorithm to perform the human action recognition. Requiring only silhouettes of actors, the proposed method is validated on two public datasets. It has an accuracy comparable to the related works and it performs well even in varying rotation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bobick, A., Davis, J.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001)

    Article  Google Scholar 

  2. Weinland, D., Ronfard, R., Boyer, E.: Free viewpoint action recognition using motion history volumes. Comput. Vis. Image Underst. 103(2–3), 249–257 (2006)

    Article  Google Scholar 

  3. Syeda-Mahmood, T., Vasilescu, M., Sethi, S.: Recognizing action events from multiple viewpoints. In: Proc. EventVideo, pp. 64–72 (2001)

    Google Scholar 

  4. Gorelick, L., Blank, M., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2247–2253 (2007)

    Article  Google Scholar 

  5. Grundmann, M., Meier, F., Essa, I.: 3d shape context and distance transform for action recognition. In: Proc. ICPR, pp. 1–4 (2008)

    Google Scholar 

  6. Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2/3), 107–123 (2005)

    Article  Google Scholar 

  7. Liu, J., Kuipers, B., Savarese, S.: Recognizing human actions by attributes. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3337–3344 (2011)

    Google Scholar 

  8. Niebles, J., Wang, H., Li, F.: Unsupervised learning of human action categories using spatial-temporal words. In: Proc. BMVC (2006)

    Google Scholar 

  9. Choi, W., Shahid, K., Savarese, S.: Learning context for collective activity recognition. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3273–3280 (2011)

    Google Scholar 

  10. Efros, A.A., Berg, A.C., Berg, E.C., Mori, G., Malik, J.: Recognizing action at a distance. In: ICCV, pp. 726–733 (2003)

    Google Scholar 

  11. Morency, L.-P., Quattoni, A., Darrell, T.: Latent-dynamic discriminative models for continuous gesture recognition. In: Proc. CVPR (2007)

    Google Scholar 

  12. Yilmaz, A., Shah, M.: Actions sketch: a novel action representation. In: Proc. CVPR, pp. I:984–989 (2005)

    Google Scholar 

  13. Lin, Z., Jiang, Z., Davis, L.S.: Recognizing actions by shape-motion prototype trees. In: Proc. ICCV (2009)

    Google Scholar 

  14. Wang, H., Kläser, A., Schmid, C., Liu, C.-L.: Action recognition by dense trajectories. In: Proc. CVPR, pp. 3169–3176 (2011)

    Google Scholar 

  15. Bregonzio, M., Gong, S., Xiang, T.: Recognising action as clouds of space-time interest points. In: Proc. CVPR, pp. 1948–1955 (2009)

    Google Scholar 

  16. Ye, L., Keogh, E.J.: Time series shapelets: a new primitive for data mining. In: Knowledge Discovery and Data Mining, pp. 947–956 (2009)

    Google Scholar 

  17. Keogh, E.J., Pazzani, M.J.: Scaling up dynamic time warping for datamining applications. In: Knowledge Discovery and Data Mining, pp. 285–289 (2000)

    Google Scholar 

  18. Lin, J., Keogh, E.J., Wei, L., Lonardi, S.: Experiencing sax: a novel symbolic representation of time series. Data Min. Knowl. Discov. 15(2), 107–144 (2007)

    Article  MathSciNet  Google Scholar 

  19. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases. SIGMOD Rec. 23(2), 419–429 (1994)

    Article  Google Scholar 

  20. Chan, K.-P., Fu, W.-C.: Efficient time series matching by wavelets. In: International Conference on Data Engineering (1994)

    Google Scholar 

  21. Lin, J., Keogh, E.J., Lonardi, S., Chiu, B.Y.: A symbolic representation of time series, with implications for streaming algorithms. In: 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 2–11 (2003)

    Chapter  Google Scholar 

  22. Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Trans. Electron. Comput. EC-10(2), 260–268 (1961)

    Article  MathSciNet  Google Scholar 

  23. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  24. Abdelkader, M.F., Abd-Almageed, W., Srivastava, A., Chellappa, R.: Silhouette-based gesture and action recognition via modeling trajectories on Riemannian shape manifolds. Comput. Vis. Image Underst. 115(3), 439–455 (2011)

    Article  Google Scholar 

  25. Hsiao, P.-C., Chen, C.-S., Chang, L.-W.: Human action recognition using temporal-state shape contexts. In: 19th International Conference on Pattern Recognition, 2008. ICPR 2008, pp. 1–4 (2008)

    Chapter  Google Scholar 

  26. Lee, C.-S., Lui, Y.M., Chun, S.Y.: In: ICCV Workshops, pp. 1318–1323 (2011)

    Google Scholar 

  27. Matikainen, P., Hebert, M., Sukthankar, R.: Representing pairwise spatial and temporal relations for action recognition. In: Daniilidis, N.P.K., Maragos, P. (eds.) European Conference on Computer Vision 2010 (ECCV 2010) (2010)

    Google Scholar 

  28. Messing, R., Pal, C., Kautz, H.: Activity Recognition Using the Velocity Histories of Tracked Keypoints, pp. 104–111 (2009)

    Google Scholar 

  29. Ali, S., Basharat, A., Shah, M.: Chaotic invariants for human action recognition. In: Proc. ICCV (2007)

    Google Scholar 

  30. Li, R., Tian, T., Sclaroff, S.: Simultaneous learning of nonlinear manifold and dynamical models for high-dimensional time series. In: Proc. ICCV (2007)

    Google Scholar 

  31. Keogh, E., Chu, S., Hart, D., Pazzani, M.: An online algorithm for segmenting time series. In: ICDM, pp. 289–296 (2001)

    Google Scholar 

  32. Popivanov, I.: Similarity search over time series data using wavelets. In: ICDE, pp. 212–221 (2002)

    Google Scholar 

  33. Aghbari, Z.A.: Effective image mining by representing color histograms as time series. J. Adv. Comput. Intell. Intell. Inform. 13(2), 109–114 (2009)

    Google Scholar 

  34. Junejo, I.N., Aghbari, Z.A.: Using sax representation for human action recognition. J. Vis. Commun. Image Represent. 23(6), 853–861 (2012)

    Article  Google Scholar 

  35. Keogh, E., Wei, L., Xi, X., Lee, S.-H., Vlachos, M.: Lb Keogh supports exact indexing of shapes under rotation invariance with arbitrary representations and distance measures. In: 33rd Very Large Data Bases Conference (2006)

    Google Scholar 

  36. Xi, X., Keogh, E., Wei, L., Mafra-Neto, A.: Finding motifs in database of shapes. In: Proc. SIAM Intl. Conf. on Data Mining. (2007)

    Google Scholar 

  37. Zunic, J., Rosin, P.L., Kopanja, L.: On the orientability of shapes. IEEE Trans. Image Process. 15(11), 3478–3487 (2006)

    Article  Google Scholar 

  38. Bhanu, B., Zhou, X.: Face recognition from face profile using dynamic time warping. In: Proc. Intl. Conference on Pattern Recognition (2006)

    Google Scholar 

  39. Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognit. 37(1), 1–19 (2004)

    Article  MATH  Google Scholar 

  40. Cardone, A., Gupta, S.K., Karnik, M.: A survey of shape similarity assessment algorithms for product design and manufacturing applications. J. Comput. Inf. Sci. Eng. 3, 109–118 (2003)

    Article  Google Scholar 

  41. Adamek, T., O’Connor, N.E.: A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Trans. Circuits Syst. Video Technol. 14(5), 742–753 (2004)

    Article  Google Scholar 

  42. Attalla, E., Siy, P.: Robust shape similarity retrieval based on contour segmentation polygonal multiresolution and elastic matching. Pattern Recognit. 38(12), 2229–2241 (2005)

    Article  Google Scholar 

  43. Keogh, E.J., Lin, J., Fu, A.W.-C.: Hot sax: efficiently finding the most unusual time series subsequence. In: IEEE International Conf. on Data Mining (ICDM), pp. 226–233 (2005)

    Chapter  Google Scholar 

  44. Javed, O., Shah, M.: Tracking and object classification for automated surveillance. In: The Seventh European Conference on Computer Vision (ECCV) (2002)

    Google Scholar 

  45. Weinland, D., Boyer, E., Ronfard, R.: Action recognition from arbitrary views using 3D exemplars. In: Proc. ICCV (2007)

    Google Scholar 

  46. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  47. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  48. Aha, D., Kibler, D.: Instance-based learning algorithms. Mach. Learn. 6, 37–66 (1991)

    Google Scholar 

  49. Ikizler, N., Duygulu, P.: Human action recognition using distribution of oriented rectangular patches. In: Workshop on Human Motion, pp. 271–284 (2007)

    Google Scholar 

Download references

Acknowledgements

This research is funded by University of Sharjah (Project 120227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran N. Junejo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junejo, I.N., Junejo, K.N. & Aghbari, Z.A. Silhouette-based human action recognition using SAX-Shapes. Vis Comput 30, 259–269 (2014). https://doi.org/10.1007/s00371-013-0842-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0842-0

Keywords

Navigation