Skip to main content

Advertisement

Log in

Structuring urban data

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Geometric city modeling is an open problem without standard solutions. Within this problem, there appear several sub-problems that must be faced, like the accurate modeling of streets, buildings and other architectonic structures. One important source of geographical information is (measured) cadastral urban data. However, this information is not always well structured, and sometimes it is even simply corrupted GIS data. In this paper we present a robust and generic solution for the generation of block and building layouts based on a repairing process applied when this data is not correct. Our input data is a top projection map of a city which usually has been created by a mixture of photogrammetric restitution and, in a second stage, hand-drawn using any GIS application. Moreover, these maps are under continuous modifications, like in the case of public administrations. This process sometimes results in the introduction of mistakes and anomalies, which are hard to correct without the appropriate tools. Our solution is based on a novel semi-automatic 2D restructuring algorithm, which uniformly corrects errors and ambiguities that are commonly present in corrupted cadastral data. This problem is complex because it is necessary to identify not just simple elements from the input file, but also their connectivity and structure in the real world. The output of our algorithm is the urban data restructured into a hierarchy of blocks and buildings, from which we can get a realistic 3D model by extruding each building using the floor number for each building within the cadastral data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a day (2009)

  2. Aliaga, D.G., Vanegas, C.A., Beneš, B.: Interactive example-based urban layout synthesis. In: SIGGRAPH Asia’08: ACM SIGGRAPH Asia Papers, pp. 1–10. ACM, New York (2008)

    Google Scholar 

  3. Autodesk: Autocad map 3d. http://usa.autodesk.com/autocad-map-3d/ (2012)

  4. Barequet, G., Sharir, M.: Filling gaps in the boundary of a polyhedron. Comput. Aided Geom. Des. 12(2), 207–229 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berg, M., Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000)

    Book  Google Scholar 

  6. Bischoff, S., Pavic, D., Kobbelt, L.: Automatic restoration of polygon models. ACM Trans. Graph. 24, 1332–1352 (2005)

    Article  Google Scholar 

  7. Borodin, P., Novotni, M., Klein, R.: Progressive gap closing for mesh repairing. In: Vince, J., Earnshaw, R. (eds.) Advances in Modelling, Animation and Rendering, pp. 201–213. Springer, Berlin (2002)

    Chapter  Google Scholar 

  8. CGAL Editorial Board: Computational geometry algorithms library (2011). www.cgal.org

  9. Chen, G., Esch, G., Wonka, P., Müller, P., Zhang, E.: Interactive procedural street modeling. ACM Trans. Graph. 27(3) (2008)

  10. Delafontaine, M., Nolf, G., Van de Weghe, N., Antrop, M., de Maeyer, P.: Assessment of sliver polygons in geographical vector data. Int. J. Geogr. Inf. Sci. 23(6), 719–735 (2009)

    Article  Google Scholar 

  11. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can. Cartograph. 10 (1973)

  12. Esri: Arcgis. http://www.arcgis.com/ (2012)

  13. Esri: Cityengine. http://www.esri.com/software/cityengine (2012)

  14. European community. Infrastructure for spatial information inspire.jrc.ec.europa.eu (2007)

  15. Fabritius, G., Kraßnigg, J., Krecklau, L., Manthei, Ch., Hornung, A., Habbecke, M., Kobbelt, L.: City virtualization. In: Kuhlen, T. (ed.) Virtuelle und erweiterte Realität: 5. Workshop der GI-Fachgruppe VR/AR/Marco Schumann. Berichte aus der Informatik, Aachen (2008). Shaker. Beitr. teilw. dt., teilw. engl.

    Google Scholar 

  16. Feuchtwanger, M.: Geographic logical database model requirements. In: AUTO-CARTO 9 Proceedings, pp. 599–609 (1989)

    Google Scholar 

  17. Flamanc, D., Maillet, G., Jibrini, H.: 3d city models: an operational approach using aerial images and cadastral maps. In: PIA05 (2005)

    Google Scholar 

  18. Ghawana, T., Zlatanova, S.: Data consistency checks for building a 3d model: a case study of Technical University, Delft Campus, The Netherlands. Geospatial World (4) (2010)

  19. Hu, J., You, S., Neumann, U.: Approaches to large-scale urban modeling. IEEE Comput. Graph. Appl. 23, 62–69 (2003)

    Google Scholar 

  20. Kluckner, S.: Semantic Interpretation of Digital Aerial Images Utilizing Redundancy, Appearance and 3D Information. Ph.D. thesis, Graz University of Technology, Institute for Computer Graphics and Vision (2011)

  21. Kolbe, H.: www.citygml.org (2011)

  22. Laurini, R., Milleret-Raffort, F.: Topological reorganization of inconsistent geographical databases: a step towards their certification. Comput. Graph. 18(6), 803–813 (1994)

    Article  Google Scholar 

  23. Lefebvre, S., Hornus, S., Lasram, A.: By-example synthesis of architectural textures. ACM Trans. Graph. 29, 84:1–84:8 (2010)

    Article  Google Scholar 

  24. Lewis, R., Séquin, C.H.: Generation of 3d building models from 2d architectural plans. Comput. Aided Des. 30(10), 765–779 (1998)

    Article  MATH  Google Scholar 

  25. Love, K.R.: Modeling error in geographic information systems. Ph.D. thesis, Virginia Polytechnic Institute and State University (2007)

  26. Maraş, S.S., Maraş, H.H., Aktuğ, B., Maraş, E.E., Yildiz, F.: Topological error correction of GIS vector data. Int. J. Phys. Sci. 5(5), 476–483 (2010)

    Google Scholar 

  27. Müller, P., Wonka, P., Haegler, S., Ulmer, A., Van Gool, L.: Procedural modeling of buildings. ACM Trans. Graph. 25(3), 614–623 (2006)

    Article  Google Scholar 

  28. OpenGeospatialConsortium Inc.: Open geospatial consortium, www.opengeospatial.org (2011)

  29. OpenStreetMap Foundation: Openstreetmap, wiki.openstreetmap.org (2011)

  30. Parish, Y.I.H., Müller, P.: Procedural modeling of cities. In: SIGGRAPH’01: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 301–308 (2001)

    Chapter  Google Scholar 

  31. Plümer, L., Gröger, G.: Achieving integrity in geographic information systems–maps and nested maps. GeoInformatica 1(4), 345–367 (1997)

    Article  Google Scholar 

  32. Rock, S.J., Wozny, M.J.: Generating topological information from a “bucket of facets”. In: Proc. Symp. on Solid Freeform Fabrication, pp. 86–94 (1992)

    Google Scholar 

  33. Rodríguez, A.: Inconsistency issues in spatial databases. In: Inconsistency Tolerance, pp. 237–269 (2004)

    Google Scholar 

  34. Sae-Jung, J., Chen, X.Y., Phuong, D.M.: Error propagation modeling in GIS overlay. In: XXIst ISPRS Congress—Technical Commission II, pp. 825–836 (2008)

    Google Scholar 

  35. Sudduth, K.A., Drummond, S.T.: Yield editor: software for removing errors from crop yield maps. Agron. J. 99, 1471–1482 (2007)

    Article  Google Scholar 

  36. Ubeda, T., Egenhofer, M.J.: Topological error correcting in GIS. In: Proceedings of the 5th International Symposium on Advances in Spatial Databases, SSD’97, pp. 283–297. Springer, London (1997)

    Google Scholar 

  37. Vanegas, C., Aliaga, D., Mueller, P., Waddell, P., Watson, B., Wonka, P.: Modeling the appearance and behavior of urban spaces. In: Proceedings of EUROGRAPHICS, State of the Art Reports (also Computer Graphics Forum, to appear), pp. 1–18 (2009)

    Google Scholar 

  38. Vanegas, C.A., Aliaga, D.G., Benes, B., Waddell, P.: Interactive design of urban spaces using geometrical and behavioral modeling. ACM Trans. Graph. 28(5) (2009)

  39. Visual Computing Lab: Italian National Research Council. Meshlab, meshlab.sourceforge.net (2011)

  40. Watson, B., Müller, P., Veryovka, O., Fuller, A., Wonka, P., Sexton, C.: Procedural urban modeling in practice. IEEE Comput. Graph. Appl. 28(3), 18–26 (2008)

    Article  Google Scholar 

  41. Weber, B., Müller, P., Wonka, P., Gross, M.H.: Interactive geometric simulation of 4d cities. Comput. Graph. Forum 28(2), 481–492 (2009)

    Article  Google Scholar 

  42. Yin, X., Wonka, P., Razdan, A.: Generating 3d building models from architectural drawings: a survey. IEEE Comput. Graph. Appl. 29(1), 20–30 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded with grant TIN2010-20590-C02-02 from the Ministerio de Ciencia e Innovacion, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Patow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pueyo, O., Patow, G. Structuring urban data. Vis Comput 30, 159–172 (2014). https://doi.org/10.1007/s00371-013-0791-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0791-7

Keywords

Navigation