Real-time simulation of lightweight rigid bodies


Unlike common rigid bodies, lightweight rigid bodies have special and spectacular motions that are known as free fall, such as fluttering (oscillation from side to side) and tumbling (rotation and sideways drifting). However, computer graphics applications cannot simulate the dynamics of lightweight rigid bodies in various environments realistically and efficiently. In this study, we first analyze the physical characteristics of free-fall motions in quiescent flow and propose a new procedural motion-synthesis method for modeling free-fall motions in interactive environments. Six primitive motions of lightweight rigid bodies are defined in a phase diagram and analyzed separately using a trajectory-search tree and precomputed trajectory database. The global paths of free-fall motions are synthesized on the basis of these primitive motions by using a free-fall motion graph whose edges are connected in the Markov-chain model. Then, our approach integrates external forces (e.g., a wind field) by using an improved noise-based algorithm under different force magnitudes and object release heights. This approach exhibits not only realistic simulation results in various environments but also fast computation to meet real-time requirements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18


  1. 1.

    Andersen, A., Pesavento, U., Wang, Z.J.: Unsteady aerodynamics of fluttering and tumbling plates. J. Fluid Mech. 541, 65–90 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. 2.

    Aoki, K., Hasegawa, O., Nagahashi, H.: Behavior learning and animation synthesis of falling flat objects. J. Adv. Comput. Intell. Intell. Inform. 8(2), 223–230 (2004)

    Google Scholar 

  3. 3.

    Arikan, O., Forsyth, D.A.: Interactive motion generation from examples. ACM Trans. Graph. 21, 483–490 (2002)

    Article  MATH  Google Scholar 

  4. 4.

    Field, S.B., Klaus, M., Moore, M.G., Nori, F.: Chaotic dynamics of falling disks. Nature 388, 252–254 (1997)

    Article  Google Scholar 

  5. 5.

    Haevre, W.V., Fiore, F.D., Reeth, F.V.: Physically-based driven tree animations. In: Chiba, N., Galin, E. (eds.) Eurographics Workshop on Natural Phenomena, pp. 75–82. Eurographics Association, Goslar (2006). doi:10.2312/NPH/NPH06/075-082

    Google Scholar 

  6. 6.

    Haiyan, L., Qingjie, S., Hui, Z., Qin, Z.: Example-based motion generation of falling leaf. In: 2010 International Conference on Computer Design and Applications (ICCDA), vol. 5, pp. V5-217–V5-221 (2010)

    Google Scholar 

  7. 7.

    Jones, M.A., Shelley, M.J.: Falling cards. J. Fluid Mech. 540, 393–425 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. 8.

    Khorloo, O., Gunjee, Z., Chiba, N.: Wind field synthesis for animating wind-induced vibration. Int. J. Virtual Real. 10, 53–60 (2011)

    Google Scholar 

  9. 9.

    Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. ACM Trans. Graph. 21, 473–482 (2002)

    Article  Google Scholar 

  10. 10.

    Mahadevan, L., Ryu, W.S., Samuel, A.D.T.: Tumbling cards. Phys. Fluids 11, 1–3 (1999)

    Article  MATH  Google Scholar 

  11. 11.

    Maxwell, J.C.: On a particular case of the descent of a heavy body in a resisting medium. Camb. Dublin Math. J. 9, 145–148 (1854)

    Google Scholar 

  12. 12.

    Olesen, H.R., Larsen, S.E., Hojstrup, J.: Modelling velocity spectra in the lower part of the planetary boundary layer. Bound.-Layer Meteorol. 29, 285–312 (1984)

    Article  Google Scholar 

  13. 13.

    Ota, S., Tamura, M., Fujimoto, T., Muraoka, K., Chiba, N.: A hybrid method for real-time animation of trees swaying in wind fields. Vis. Comput. 20, 613–623 (2004)

    Article  Google Scholar 

  14. 14.

    Razavi, P.: On the motion of falling leaves. ArXiv e-prints (2010)

  15. 15.

    Reissell, L.M., Pai, D.K.: Modeling stochastic dynamical systems for interactive simulation. Comput. Graph. Forum 20, 339–348 (2001)

    Article  Google Scholar 

  16. 16.

    Shi, L., Yu, Y., Wojtan, C., Chenney, S.: Controllable motion synthesis in a gaseous medium. Vis. Comput. 21(7), 474–487 (2005)

    Article  Google Scholar 

  17. 17.

    Shinya, M., Fournier, A.: Stochastic motion–motion under the influence of wind. Comput. Graph. Forum 11(3), 119–128 (1992)

    Article  MATH  Google Scholar 

  18. 18.

    Stam, J., Eugene, F.: Turbulent wind fields for gaseous phenomena. In: SIGGRAPH’93, pp. 369–376. ACM Press, New York (1993)

    Google Scholar 

  19. 19.

    Stringham, G.E., Daryl, S., Guy, H.: The behavior of large particles falling in quiescent liquids. Geol. Surv. Prof. Pap. 562-C, C1–C36 (1969)

    Google Scholar 

  20. 20.

    Tanabe, Y., Kaneko, K.: Behavior of a falling paper. Phys. Rev. Lett. 73, 1372–1375 (1994)

    Article  Google Scholar 

  21. 21.

    Thuillier, R.H., Lappe, U.O.: Wind and temperature profile characteristics from observations on a 1400 ft tower. J. Appl. Meteorol. 3, 299–306 (1964)

    Article  Google Scholar 

  22. 22.

    Vázquez, P.-P., Balsa, M.: Rendering falling leaves on graphics hardware. J. Virtual Real. Broadcast. 5(2) (2008).

  23. 23.

    Wei, X., Zhao, Y., Fan, Z., Li, W., Qiu, F., Yoakum-Stover, S., Kaufman, A.E.: Lattice-based flow field modeling. IEEE Trans. Vis. Comput. Graph. 10, 719–729 (2004)

    Article  Google Scholar 

  24. 24.

    Weismann, S., Pinkall, U.: Underwater rigid body dynamics. ACM Trans. Graph. 31(4), 104:1–104:7 (2012)

    Article  Google Scholar 

  25. 25.

    Willmarth, W.W., Hawk, N.E., Harvey, R.L.: Steady and unsteady motions and wakes of freely falling disks. Phys. Fluids 7, 197–208 (1964)

    Article  MATH  Google Scholar 

  26. 26.

    Zhang, L., Zhang, Y., Jiang, Z., Li, L., Chen, W., Peng, Q.: Precomputing data-driven tree animation. J. Vis. Comput. Animat. 18(4–5), 371–382 (2007)

    Google Scholar 

  27. 27.

    Zhong, H., Chen, S., Lee, C.: Experimental study of freely falling thin disks: transition from planar zigzag to spiral. Phys. Fluids 23(1) (2011)

Download references

Author information



Corresponding author

Correspondence to Haoran Xie.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xie, H., Miyata, K. Real-time simulation of lightweight rigid bodies. Vis Comput 30, 81–92 (2014).

Download citation


  • Natural phenomenon
  • Motion synthesis
  • Lightweight rigid body
  • Real-time simulation