Skip to main content
Log in

Progressive 3D mesh compression using MOG-based Bayesian entropy coding and gradual prediction

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

A progressive 3D triangular mesh compression algorithm built on the MOG-based Bayesian entropy coding and the gradual prediction scheme is proposed in this work. For connectivity coding, we employ MOG models to estimate the posterior probabilities of topology symbols given vertex geometries. Then, we encode the topology symbols using an arithmetic coder with different contexts, which depend on the posterior probabilities. For geometry coding, we propose the gradual prediction labeling and the dual-ring prediction to divide vertices into groups and predict later groups more efficiently using the information in already encoded groups. Simulation results demonstrate that the proposed algorithm provides significantly better performance than the conventional wavemesh coder, with the average bit rate reduction of about 16.9 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ahn, J.K., Lee, D.Y., Ahn, M., Kim, C.S.: R-D optimized progressive compression of 3D meshes using prioritized gate selection and curvature prediction. J. Vis. Comput. 27(6–8), 769–779 (2011)

    Article  Google Scholar 

  2. Ahn, J.K., Lee, D.Y., Ahn, M., Kim, J., Kim, C., Kim, C.S.: Progressive compression of 3D triangular meshes using topology-based Karhunen–Loève transform. In: Proc. ICIP, pp. 3417–3420 (2010)

    Google Scholar 

  3. Alliez, P., Desbrun, M.: Progressive compression for lossless transmission of triangle meshes. In: Proc. ACM SIGGRAPH, pp. 195–202 (2001)

    Google Scholar 

  4. Alliez, P., Desbrun, M.: Valence-driven connectivity encoding for 3D meshes. Comput. Graph. Forum 20(3), 480–489 (2001)

    Article  Google Scholar 

  5. Aspert, N., Santa-Cruz, D., Ebrahimi, T.M.: MESH: Measuring errors between surfaces using the Hausdorff distance. In: Proc. ICME, vol. 1, pp. 705–708 (2002)

    Google Scholar 

  6. Cleary, J.G., Witten, I.H.: Data compression using adaptive coding and partial string matching. IEEE Trans. Commun. 32(4), 396–402 (1984)

    Article  Google Scholar 

  7. Courbet, C., Hudelot, C.: Taylor prediction for mesh geometry compression. Comput. Graph. Forum 30(1), 139–151 (2011)

    Article  Google Scholar 

  8. Deering, M.: Geometry compression. In: Proc. ACM SIGGRAPH, pp. 13–20 (1995)

    Google Scholar 

  9. Gandoin, P.M., Devillers, O.: Progressive lossless compression of arbitrary simplicial complexes. ACM Trans. Graph. 21(3), 372–379 (2002)

    Article  Google Scholar 

  10. Hoppe, H.: Progressive meshes. In: Proc. ACM SIGGRAPH, pp. 99–108 (1996)

    Google Scholar 

  11. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proc. ACM SIGGRAPH, pp. 279–286 (2000)

    Google Scholar 

  12. Kim, J., Nam, C., Choe, S.: Bayesian AD coder: mesh-aware valence coding for multiresolution meshes. J. Comput. Graph. 35(3), 713–718 (2011)

    Article  Google Scholar 

  13. Lee, D.Y., Ahn, J.K., Ahn, M., Kim, J., Kim, C., Kim, C.S.: 3D mesh compression based on dual-ring prediction and MMSE prediction. In: Proc. ICIP, pp. 921–924 (2011)

    Google Scholar 

  14. Lee, H., Lavoué, G., Dupont, F.: Adaptive coarse-to-fine quantization for optimizing rate-distortion of progressive mesh compression. In: Proc. Vision, Modeling, and Visualization, pp. 73–81 (2009)

    Google Scholar 

  15. Lee, H., Lavoué, G., Dupont, F.: Rate-distortion optimization for progressive compression of 3D mesh with color attributes. J. Vis. Comput. 28(2), 137–153 (2012)

    Google Scholar 

  16. Moffat, A., Neal, R.M., Witten, I.H.: Arithmetic coding revisited. ACM Trans. Inf. Syst. 16(3), 256–294 (1998)

    Article  Google Scholar 

  17. Pajarola, R., Rossignac, J.: Compressed progressive meshes. IEEE Trans. Vis. Comput. Graph. 6(1), 79–93 (2000)

    Article  Google Scholar 

  18. Peng, J., Huang, Y., Kuo, C.C.J., Eckstein, I., Gopi, M.: Feature oriented progressive lossless mesh coding. Comput. Graph. Forum 29(7), 2029–2038 (2010)

    Article  Google Scholar 

  19. Peng, J., Kuo, C.C.J.: Geometry-guided progressive lossless 3D mesh coding with octree (OT) decomposition. ACM Trans. Graph. 24(3), 609–616 (2005)

    Article  Google Scholar 

  20. Rossignac, J.: Edgebreaker: connectivity compression for triangle meshes. IEEE Trans. Vis. Comput. Graph. 5(1), 47–61 (1999)

    Article  Google Scholar 

  21. Schindler, M.: A fast renormalisation for arithmetic coding. In: Proc. Data Compression Conference (1998)

    Google Scholar 

  22. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: Proc. CVPR, pp. 246–252 (1999)

    Google Scholar 

  23. Taubin, G., Rossignac, J.: Geometric compression through topological surgery. ACM Trans. Graph. 17(2), 84–115 (1998)

    Article  Google Scholar 

  24. Touma, C., Gotsman, C.: Triangle mesh compression. In: Proc. Graphics Interface, pp. 26–34 (1998)

    Google Scholar 

  25. Valette, S., Chaine, R., Prost, R.: Progressive lossless mesh compression via incremental parametric refinement. Comput. Graph. Forum 28(5), 1301–1310 (2009)

    Article  Google Scholar 

  26. Valette, S., Prost, R.: Wavelet-based multiresolution analysis of irregular surface meshes. IEEE Trans. Vis. Comput. Graph. 10(2), 113–122 (2004)

    Article  Google Scholar 

  27. Valette, S., Prost, R.: Wavelet-based progressive compression scheme for triangle meshes: Wavemesh. IEEE Trans. Vis. Comput. Graph. 10(2), 123–129 (2004)

    Article  Google Scholar 

  28. Valette, S., Rossignac, J., Prost, R.: An efficient subdivision inversion for wavemesh-based progressive compression of 3D triangle meshes. In: Proc. ICIP, vol. 1, pp. 777–780 (2003)

    Google Scholar 

Download references

Acknowledgements

This work was supported partly by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012-011031), and partly by the Global Frontier R&D Program on Human-centered Interaction for Coexistence, funded by the NRF grant by the Korean Government (MEST) (NRF-M1AXA003-2011-0031648).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Su Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, DY., Sull, S. & Kim, CS. Progressive 3D mesh compression using MOG-based Bayesian entropy coding and gradual prediction. Vis Comput 30, 1077–1091 (2014). https://doi.org/10.1007/s00371-013-0779-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0779-3

Keywords

Navigation