The Visual Computer

, Volume 29, Issue 4, pp 265–275 | Cite as

Modeling and animation of fracture of heterogeneous materials based on CUDA

  • Jiangfan Ning
  • Huaxun Xu
  • Bo Wu
  • Liang Zeng
  • Sikun Li
  • Yueshan Xiong
Original Article

Abstract

Existing techniques for animation of object fracture are based on an assumption that the object materials are homogeneous while most real world materials are heterogeneous. In this paper, we propose to use movable cellular automata (MCA) to simulate fracture phenomena on heterogeneous objects. The method is based on the discrete representation and inherits the advantages from both classical cellular automaton and discrete element methods. In our approach, the object is represented as discrete spherical particles, named movable cellular automata. MCA is used to simulate the material and physical properties so as to determine when and where the fracture occurs. To achieve real-time performance, we accelerate the complex computation of automata’s physical properties in MCA simulation using CUDA on a GPU. The simulation results are directly sent to vertex buffer object (VBO) for rendering to avoid the costly communication between CPU and GPU. The experimental results show the effectiveness of our method.

Keywords

Fracture Modeling Animation Movable cellular automata Heterogeneous CUDA 

References

  1. 1.
    Imagire, T., Johan, H., Nishita, T.: A fast method for simulating destruction and the generated dust and debris. Vis. Comput. 25, 719–727 (2009) CrossRefGoogle Scholar
  2. 2.
    Terzopoulos, D., Witkin, A.: Physically based models with rigid and deformable components. IEEE Comput. Graph. Appl. 8, 41–51 (1988) CrossRefGoogle Scholar
  3. 3.
    Terzopoulos, D., Fleischer, K.: Modeling inelastic deformation: viscolelasticity, plasticity, fracture. In: Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, pp. 269–278 (1988) CrossRefGoogle Scholar
  4. 4.
    Norton, A., Turk, G., Bacon, B., Gerth, J., Sweeney, P.: Animation of fracture by physical modeling. Vis. Comput. 7, 210–219 (1991) CrossRefGoogle Scholar
  5. 5.
    O’Brien, J.F., Hodgins, J.K.: Graphical modeling and animation of brittle fracture. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 137–146 (1999) Google Scholar
  6. 6.
    Parker, E.G., O’Brien, J.F.: Real-time deformation and fracture in a game environment. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, New Orleans, Louisiana, pp. 165–175 (2009) CrossRefGoogle Scholar
  7. 7.
    Bao, Z., Hong, J., Teran, J., Fedkiw, R.: Fracturing rigid materials. IEEE Trans. Vis. Comput. Graph. 13, 370–378 (2007) CrossRefGoogle Scholar
  8. 8.
    Su, J., Schroeder, C., Fedkiw, R.: Energy stability and fracture for frame rate rigid body simulations. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, New Orleans, Louisiana, pp. 155–164 (2009) CrossRefGoogle Scholar
  9. 9.
    Desbrun, M., Cani-Gascue, M.: Animating soft substances with implicit surfaces. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 287–290 (1995) Google Scholar
  10. 10.
    Muller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., Alexa, M.: Point based animation of elastic, plastic and melting objects. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Grenoble, France, pp. 141–151 (2004) CrossRefGoogle Scholar
  11. 11.
    Muller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. In: Proceedings of the ACM SIGGRAPH 2005 Papers, Los Angeles, California, pp. 471–478 (2005) CrossRefGoogle Scholar
  12. 12.
    Pauly, M., Keiser, R., Adams, B., Dutre, P., Gross, M., Guibas, L.J.: Meshless animation of fracturing solids. In: Proceedings of the ACM SIGGRAPH 2005 Papers, Los Angeles, California, pp. 957–964 (2005) CrossRefGoogle Scholar
  13. 13.
    Guo, X., Qin, H.: Real-time meshless deformation. Comput. Animat. Virtual Worlds 16, 189–200 (2005) CrossRefGoogle Scholar
  14. 14.
    Bell, N., Yu, Y., Mucha, P.J.: Particle-based simulation of granular materials. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Los Angeles, California, pp. 77–86 (2005) CrossRefGoogle Scholar
  15. 15.
    Liu, N., He, X., Li, S., Wang, G.: Meshless simulation of brittle fracture. Comput. Animat. Virtual Worlds 22, 115–124 (2011) CrossRefGoogle Scholar
  16. 16.
    Guo, X., Li, X., Bao, Y., Gu, X., Qin, H.: Meshless thin-shell simulation based on global conformal parameterization. IEEE Trans. Vis. Comput. Graph. 12(3), 375–385 (2006) CrossRefGoogle Scholar
  17. 17.
    Psakhie, S.G., Horie, Y., Korostelev, S.Y., Smolin, A.Y., Dmitriev, A.I., Shilko, E.V., Alekseev, S.V.: Method of movable cellular automata as a tool for simulation within the framework of mesomechanics. Russ. Phys. J. 38, 1157–1168 (1995) CrossRefGoogle Scholar
  18. 18.
    Psakhie, S.G., Korostelev, S.Y., Smolin, A.Y., Dmitriev, A.I., Shilko, E.V., Moiseyenko, D.D., et al.: Movable cellular automata method as a tool for physical mesomechanics of materials. Phys. Mesomech. 1(1), 89–101 (1998) Google Scholar
  19. 19.
    Psakhie, S.G., Moiseyenko, D.D., Smolin, A.Y., Shilko, E.V., Dmitriev, A.I., Korostelev, S.Y., et al.: The features of fracture of heterogeneous materials and frame structures. Potentialities of mca design. Comput. Mater. Sci. 16(1–4), 333–343 (1999) CrossRefGoogle Scholar
  20. 20.
    Psakhie, S.G., Zavshekand, S., Jezershek, J., Shilko, E.V., Dmitriev, A.I., Smolin, A.Y., et al.: Computer-aided examination and forecast of strength properties of heterogeneous coal-beds. Comput. Mater. Sci. 19(1–4), 69–76 (2000) CrossRefGoogle Scholar
  21. 21.
    Psakhie, S.G., Horie, Y., Ostermeyer, G.P., Korostelev, S.Y., Smolin, A.Y., Shilko, E.V., et al.: Movable cellular automata method for simulating materials with mesostructure. Theor. Appl. Fract. Mech. 37(1–3), 311–334 (2001) CrossRefGoogle Scholar
  22. 22.
    Chen, K.: MCA method and the study of penetration of projectile into concrete target. Ph.D. Thesis, Nanjing University of Science and Technology, Nanjing (December 2005) Google Scholar
  23. 23.
    Green, S.: CUDA particles. White paper (November 2007) Google Scholar
  24. 24.
    Georgii, J., Westermann, R.: Mass-spring systems on the gpu. Simul. Model. Pract. Theory 13(8), 693–702 (2005) CrossRefGoogle Scholar
  25. 25.
    Liu, W., Schmidt, B., Voss, G., Mller-Wittig, W.: Accelerating molecular dynamics simulations using graphics processing units with cuda. Comput. Phys. Commun. 179(9), 634–641 (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jiangfan Ning
    • 1
  • Huaxun Xu
    • 1
  • Bo Wu
    • 1
  • Liang Zeng
    • 1
  • Sikun Li
    • 1
  • Yueshan Xiong
    • 1
  1. 1.School of Computer ScienceNational University of Defense TechnologyChangshaChina

Personalised recommendations