The Visual Computer

, Volume 29, Issue 4, pp 241–251 | Cite as

Skeleton-driven surface deformation through lattices for real-time character animation

  • Cheng-Hao Chen
  • Ming-Han Tsai
  • I-Chen Lin
  • Pin-Hua Lu
Original Article

Abstract

In this paper, an efficient deformation framework is presented for skeleton-driven polygonal characters. Standard solutions, such as linear blend skinning, focus on primary deformations and require intensive user adjustment. We propose constructing a lattice of cubic cells embracing the input surface mesh. Based on the lattice, our system automatically propagates smooth skinning weights from bones to drive the surface primary deformation, and it rectifies the over-compressed regions by volume preservation. The secondary deformation is, in the meanwhile, generated by the lattice shape matching with dynamic particles. The proposed framework can generate both low- and high-frequency surface motions such as muscle deformation and vibrations with few user interventions. Our results demonstrate that the proposed lattice-based method is liable to GPU computation, and it is adequate to real-time character animation.

Keywords

Lattice-based shape Character skinning Secondary deformation Skeleton-driven animation 

References

  1. 1.
    Baran, I., Popović, J.: Automatic rigging and animation of 3d characters. ACM Trans. Graph. 26(3), 72 (2007) CrossRefGoogle Scholar
  2. 2.
    Botsch, M., Pauly, M., Wicke, M., Gross, M.: Adaptive space deformations based on rigid cells. Comput. Graph. Forum 26(3), 339–347 (2007) CrossRefGoogle Scholar
  3. 3.
    Capell, S., Green, S., Curless, B., Duchamp, T., Popović, Z.: Interactive skeleton-driven dynamic deformations. ACM Trans. Graph. 21(3), 586–593 (2002) CrossRefGoogle Scholar
  4. 4.
    Cordier, F., Magnenat-Thalmann, N.: A data-driven approach for real-time clothes simulation. In: Proc. Pacific Graphics, pp. 257–266 (2004) Google Scholar
  5. 5.
    Faloutsos, P., van de Panne, M., Terzopoulos, D.: Dynamic free-form deformations for animation synthesis. IEEE Trans. Vis. Comput. Graph. 3(3), 201–214 (1997) CrossRefGoogle Scholar
  6. 6.
    Forstmann, S., Ohya, J., Krohn-Grimberghe, A., McDougall, R.: Deformation styles for spline-based skeletal animation. In: Proc. ACM SIGGRAPH/ Eurographics Symp. on Computer Animation, pp. 141–150 (2007) Google Scholar
  7. 7.
    James, D.L., Barbič, J., Twigg, C.D.: Squashing cubes: automating deformable model construction for graphics. In: Proc. ACM SIGGRAPH 2004 Conference, Sketches & Applications (2004) Google Scholar
  8. 8.
    Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26(3), 71 (2007) CrossRefGoogle Scholar
  9. 9.
    Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24(3), 561–566 (2005) CrossRefGoogle Scholar
  10. 10.
    Ju, T., Zhou, Q., van de Panne, M., Cohen-Or, D., Neumann, U.: Reusable skinning templates using cage-based deformations. ACM Trans. Graph. 27(5), 122 (2008) CrossRefGoogle Scholar
  11. 11.
    Kavan, L., Collins, S., Žára, J., O’Sullivan, C.: Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. 27(4), 105 (2008) CrossRefGoogle Scholar
  12. 12.
    Kim, B.-U., Feng, W.-W., Yu, Y.: Real-time data driven deformation with affine bones. Vis. Comput. 26(6–8), 487–495 (2010) CrossRefGoogle Scholar
  13. 13.
    Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. ACM Trans. Graph. 21(3), 473–482 (2002) CrossRefGoogle Scholar
  14. 14.
    Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: a unified approach to shape interpolation and skeletondriven deformation. In: Proc. ACM SIGGRAPH’00, pp. 165–172 (2000) Google Scholar
  15. 15.
    Li, J., Lu, G., Ye, J.: Automatic skinning and animation of skeletal models. Vis. Comput. 27(6–8), 585–594 (2011) CrossRefGoogle Scholar
  16. 16.
    Lin, I.-C., Peng, J.-Y., Lin, C.-C., Tsai, M.-H.: Adaptive motion data representation with repeated motion analysis. IEEE Trans. Vis. Comput. Graph. 17(4), 527–538 (2011) CrossRefGoogle Scholar
  17. 17.
    Magnenat-Thalmann, N., Laperrìere, R., Thalmann, D.: Joint-dependent local deformations for hand animation and object grasping. In: Proc. Graphics Interface’88, pp. 26–33 (1988) Google Scholar
  18. 18.
    Müller, M., Dorsey, J., Mcmillan, L., Jagnow, R., Cutler, B.: Stable real-time deformations. In: Proc. ACM SIGGRAPH Symp. on Computer Animation, pp. 49–54 (2005) Google Scholar
  19. 19.
    Müller, M., Gross, M.: Interactive virtual materials. In: Proc. Graphics Interface’04, pp. 239–246 (2004) Google Scholar
  20. 20.
    Molino, N., Bao, Z., Fedkiw, R.: A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23(3), 385–392 (2004) CrossRefGoogle Scholar
  21. 21.
    O’Brien, J.F., Zordan, V.B., Hodgins, J.K.: Combining active and passive simulations for secondary motion. IEEE Comput. Graph. Appl. 20(4), 86–96 (2000) CrossRefGoogle Scholar
  22. 22.
    Peng, J.-Y., Lin, I.-C., Chao, J.-S., Chen, Y.-J., Juang, G.-H.: Interactive and flexible motion transition. Comput. Animat. Virtual Worlds 18(4–5), 549–558 (2007) CrossRefGoogle Scholar
  23. 23.
    Rivers, A.R., James, D.L.: Fastlsm: fast lattice shape matching for robust realtime deformation. ACM Trans. Graph. 26(3), 82 (2007) CrossRefGoogle Scholar
  24. 24.
    Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., Guo, B.: Example-based dynamic skinning in real time. ACM Trans. Graph. 27(3), 29 (2008) CrossRefGoogle Scholar
  25. 25.
    Sifakis, E., Neverov, I., Fedkiw, R.: Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph. 24(3), 417–425 (2005) CrossRefGoogle Scholar
  26. 26.
    Takamatsu, K., Kanai, T.: Volume-preserving lsm deformations. In: Proc. ACM SIGGRAPH ASIA’09 Sketches (2009), article: 15 Google Scholar
  27. 27.
    von Funck, W., Theisel, H., Seidel, H.-P.: Elastic secondary deformations by vector field integration. In: Proc. Eurographics Symp. on Geometry Processing’07, pp. 99–108 (2007) Google Scholar
  28. 28.
    Wang, R.Y., Pulli, K., Popović, J.: Real-time enveloping with rotational regression. ACM Trans. Graph. 26(3), 55 (2007) CrossRefGoogle Scholar
  29. 29.
    Wang, Y.-S., Lee, T.-Y.: Curve-skeleton extraction using iterative least squares optimization. IEEE Trans. Vis. Comput. Graph. 14(4), 926–936 (2008) MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., Shum, H.: Large mesh deformation using the volumetric graph laplacian. ACM Trans. Graph. 24(3), 496–503 (2005) CrossRefGoogle Scholar
  31. 31.
    CMU GraphicsLab: Motion Capture Database. http://mocap.cs.cmu.edu (2011). Accessed, Dec. 2011
  32. 32.
    Lee, J., Kim, M.-S., Yoon, S.-H.: Patches: character skinning with local deformation layer. Comput. Animat. Virtual Worlds 20(2–3), 321–331 (2009) CrossRefGoogle Scholar
  33. 33.
    Hyun, D.-E., Yoon, S.-H., Chang, J.-W., Seong, J.-K., Kim, M.-S., Jüttler, B.: Sweep-based human deformation. Vis. Comput. 21(8–10), 542–550 (2005) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Cheng-Hao Chen
    • 1
  • Ming-Han Tsai
    • 1
  • I-Chen Lin
    • 1
  • Pin-Hua Lu
    • 1
  1. 1.Department of Computer ScienceNational Chiao Tung UniversityHsinchu CityTaiwan

Personalised recommendations