Skip to main content

Advertisement

Log in

Evaluation of 3D interest point detection techniques via human-generated ground truth

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we present an evaluation strategy based on human-generated ground truth to measure the performance of 3D interest point detection techniques. We provide quantitative evaluation measures that relate automatically detected interest points to human-marked points, which were collected through a web-based application. We give visual demonstrations and a discussion on the results of the subjective experiments. We use a voting-based method to construct ground truth for 3D models and propose three evaluation measures, namely False Positive and False Negative Errors, and Weighted Miss Error to compare interest point detection algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Boyer, E., Bronstein, A.M., Bronstein, M.M., Bustos, B., Darom, T., Horaud, R., Hotz, I., Keller, Y., Keustermans, J., Kovnatsky, A., Litman, R., Reininghaus, J., Sipiran, I., Smeets, D., Suetens, P., Vandermeulen, D., Zaharescu, A., Zobel, V.: SHREC 2011: robust feature detection and description benchmark. In: 3DOR, pp. 71–78 (2011)

    Google Scholar 

  2. Bronstein, A., Bronstein, M., Bustos, B., Castellani, U., Crisani, M., Falcidieno, B., Guibas, L., Kokkinos, I., Murino, V., Sipiran, I., Ovsjanikovy, M., Patanè, G., Spagnuolo, M., Sun, J.: SHREC 2010: robust feature detection and description benchmark. In: Eurographics Workshop on 3D Object Retrieval (3DOR’10), pp. 79–86 (2010)

    Google Scholar 

  3. Castellani, U., Cristani, M., Fantoni, S., Murino, V.: Sparse points matching by combining 3D mesh saliency with statistical descriptors. Comput. Graph. Forum 27(2), 643–652 (2008)

    Article  Google Scholar 

  4. Chung, M., Taylor, J.: Diffusion smoothing on brain surface via finite element method. In: ISBI, pp. 432–435 (2004)

    Google Scholar 

  5. Dutagaci, H., Cheung, C.P., Godil, A.: Evaluation of 3D interest point detection techniques. In: 3DOR, pp. 57–64 (2011)

    Google Scholar 

  6. Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Symposium on Geometry Processing, pp. 197–206 (2005)

    Google Scholar 

  7. Godil, A., Wagan, A.I.: Salient local 3D features for 3D shape retrieval. In: 3D Image Processing (3DIP) and Applications II. SPIE, Bellingham (2011)

    Google Scholar 

  8. Harris, C., Stephens, M.: A combined corner and edge detector. In: 4th Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  9. Hu, J., Hua, J.: Salient spectral geometric features for shape matching and retrieval. Vis. Comput. 25(5–7), 667–675 (2009)

    Article  Google Scholar 

  10. Kim, Y., Varshney, A., Jacobs, D.W., Guimbretière, F.: Mesh saliency and human eye fixations. ACM Trans. Appl. Percept. 7(2), 12 (2010)

    Article  Google Scholar 

  11. Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. In: ACM SIGGRAPH 2005, pp. 659–666 (2005)

    Chapter  Google Scholar 

  12. Litman, R., Bronstein, A.M., Bronstein, M.M.: Diffusion-geometric maximally stable component detection in deformable shapes. Comput. Graph. 35(3), 549–560 (2011)

    Article  Google Scholar 

  13. Lloyd, B.A., Szekely, G., Kikinis, R., Warfield, S.K.: Comparison of salient point detection methods for 3D medical images. The Insight Journal—2005 MICCAI Open-Source Workshop (2005)

  14. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  15. Maes, C., Fabry, T., Keustermans, J., Smeets, D., Suetens, P., Vandermeulen, D.: Feature detection on 3d face surfaces for pose normalisation and recognition. In: Biometrics Theory Applications and Systems BTAS 2010 Fourth IEEE International Conference on, pp. 1–6 (2010)

    Chapter  Google Scholar 

  16. Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes. Int. J. Comput. Vis. 89(2–3), 348–361 (2010)

    Article  Google Scholar 

  17. Novatnack, J., Nishino, K.: Scale-dependent 3D geometric features. In: ICCV, pp. 1–8 (2007)

    Google Scholar 

  18. Sebe, N., Lew, M.S.: Comparing salient point detectors. Pattern Recognit. Lett. 24(1–3), 89–96 (2003)

    Article  MATH  Google Scholar 

  19. Sipiran, I., Bustos, B.: A robust 3D interest points detector based on Harris operator. In: Eurographics 2010 Workshop on 3D Object Retrieval (3DOR’10), pp. 7–14 (2010)

    Google Scholar 

  20. Sipiran, I., Bustos, B.: Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes. Vis. Comput. 27, 963–976 (2011)

    Article  Google Scholar 

  21. Smith, S.M., Brady, J.M.: Susan—a new approach to low level image processing. Int. J. Comput. Vis. 23, 45–78 (1995)

    Article  Google Scholar 

  22. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Eurographics Symposium on Geometry Processing (SGP), pp. 1383–1392 (2009)

    Google Scholar 

  23. Walter, N., Aubreton, O., Laligant, O.: Salient point characterization for low resolution meshes. In: ICIP, pp. 1512–1515 (2008)

    Google Scholar 

  24. Wessel, R., Novotni, M., Klein, R.: Correspondences between salient points on 3D shapes. In: Vision, Modeling, and Visualization (VMV’06), pp. 365–372 (2006)

    Google Scholar 

  25. Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.P.: Surface feature detection and description with applications to mesh matching. In: CVPR (2009)

    Google Scholar 

  26. Zou, G., Hua, J., Dong, M., Qin, H.: Surface matching with salient keypoints in geodesic scale space. Comput. Animat. Virtual Worlds 19(3–4), 399–410 (2008)

    Article  Google Scholar 

  27. http://control.nist.gov/sharp/view/

  28. http://www.itl.nist.gov/iad/vug/sharp/benchmark/3DInterestPoint/

  29. http://www.graphics.stanford.edu/data/3Dscanrep/

  30. http://watertight.ge.imati.cnr.it

  31. http://profs.sci.univr.it/~castella/research.html/

Download references

Acknowledgements

We would like to thank Daniela Giorgi and AIM@SHAPE for the models from the Watertight Track of SHREC 2007, and Stanford Computer Graphics Laboratory for the models from The Stanford 3D Scanning Repository. We would like to thank Ivan Sipiran, Benjamin Bustos, Umberto Castellani, Ko Nishino, and Prabin Bariya for sharing their interest point detection codes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helin Dutagaci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutagaci, H., Cheung, C.P. & Godil, A. Evaluation of 3D interest point detection techniques via human-generated ground truth. Vis Comput 28, 901–917 (2012). https://doi.org/10.1007/s00371-012-0746-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0746-4

Keywords

Navigation