An empirical evaluation of different haptic feedback for shape and texture recognition

An Erratum to this article was published on 19 February 2013


The scope of this research is to evaluate three different haptic feedback methods for texture discrimination in virtual environments. In particular, a Phantom force feedback device, a custom-made vibrotactile dataglove and paper palpable prototypes have been used. This paper describes a new study which corroborates the results of an initial experiment (Martínez et al. in 2011 International Conference on Cyberworlds, pp. 62–68, 2011) and performs a more in-depth evaluation of some results of interest and, in particular, those based on gender. In the experiment expansion, the number of users has been increased, so both genders are even, and the texture identification strategies have been analyzed. Finally, statistical analyses have been conducted to assess the differences between both genders, showing a new path which could be explored with new experiments. In addition, the vibrotactile dataglove has proved to have a notable behavior in the detection of varying grating textures, and it is even useful to identify shapes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.

    Hollins, M., Bensmaïa, S.J., Roy, E.A.: Vibrotaction and texture perception. Behav. Brain Res. 135(1–2), 51–56 (2002)

    Article  Google Scholar 

  2. 2.

    H3D Open Source Haptics (2012). URL Accessed 10 January 2012

  3. 3.

    Sensable (2012). URL Accessed 10 January 2012

  4. 4.

    Allerkamp, D., Böttcher, G., Wolter, F.E., Brady, A.C., Qu, J., Summers, I.R.: A vibrotactile approach to tactile rendering. Vis. Comput. 23(2), 97–108 (2006). doi:10.1007/s00371-006-0031-5

    Article  Google Scholar 

  5. 5.

    Gabbard, J., Hix, D., Swan, J.: User-centered design and evaluation of virtual environments. IEEE Comput. Graph. Appl. 19(6), 51–59 (1999). doi:10.1109/38.799740

    Article  Google Scholar 

  6. 6.

    Gurari, N., Smith, K., Madhav, M., Okamura, A.M.: Environment discrimination with vibration feedback to the foot, arm, and fingertip. In: IEEE International Conference on Rehabilitation Robotics, pp. 343–348. IEEE, Kyoto (2009). doi:10.1109/ICORR.2009.5209508

    Google Scholar 

  7. 7.

    Johansson, R.S.: Tactile sensibility in the human hand: receptive field characteristics of mechanoreceptive units in the glabrous skin area. J. Physiol. 281, 101–125 (1978)

    Google Scholar 

  8. 8.

    Kuchenbecker, K.J., Fiene, J., Niemeyer, G.: Improving contact realism through event-based haptic feedback. IEEE Trans. Vis. Comput. Graph. 12(2), 219–230 (2006). doi:10.1109/TVCG.2006.32

    Article  Google Scholar 

  9. 9.

    Kyung, K., Lee, J., Park, J.: Comparison of force, tactile and vibrotactile feedback for texture representation using a combined haptic feedback interface. In: Oakley, I., Brewster, S. (eds.) Haptic and Audio Interaction Design, vol. 4813, pp. 34–43. Springer, Berlin (2007). doi:10.1007/978-3-540-76702-2_5

    Google Scholar 

  10. 10.

    Martínez, D., Kieffer, S., Martínez, J., Molina, J.P., Macq, B., González, P.: Usability evaluation of virtual reality interaction techniques for positioning and manoeuvring in reduced, manipulation-oriented environments. Vis. Comput. 26(6–8), 619–628 (2010). doi:10.1007/s00371-010-0499-x

    Article  Google Scholar 

  11. 11.

    Martínez, J., Martínez, D., Molina, J.P., González, P., Garcia, A.: Comparison of force and vibrotactile feedback with direct stimulation for texture recognition. In: 2011 International Conference on Cyberworlds, pp. 62–68. IEEE, Banff (2011). doi:10.1109/CW.2011.23

    Google Scholar 

  12. 12.

    Minsky, M., Ming, O.y., Steele, O., Brooks, F.P., Behensky, M.: Feeling and seeing: issues in force display. In: Proceedings of the 1990 Symposium on Interactive 3D Graphics—SI3D ’90, pp. 235–241. ACM Press, New York (1990). doi:10.1145/91385.91451

    Google Scholar 

  13. 13.

    Okamoto, S., Konyo, M., Saga, S., Tadokoro, S.: Identification of cutaneous detection thresholds against time-delay stimuli for tactile displays. In: 2008 IEEE International Conference on Robotics and Automation, pp. 220–225. IEEE, Pasadena (2008). doi:10.1109/ROBOT.2008.4543212

    Google Scholar 

  14. 14.

    Okamura, A., Dennerlein, J., Howe, R.: Vibration feedback models for virtual environments. In: Proceedings. 1998 IEEE International Conference on Robotics and Automation, vol. 1, pp. 674–679. IEEE, Leuven (1998). doi:10.1109/ROBOT.1998.677050

    Google Scholar 

  15. 15.

    Robles-De-La-Torre, G.: The importance of the sense of touch in virtual and real environments. IEEE Multimed. 13(3), 24–30 (2006). doi:10.1109/MMUL.2006.69

    Article  Google Scholar 

  16. 16.

    Ryu, J., Kim, G.J.: Using a vibro-tactile display for enhanced collision perception and presence. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology—VRST ’04, p. 89. ACM Press, New York (2004). doi:10.1145/1077534.1077551

    Google Scholar 

  17. 17.

    Shirali-Shahreza, M., Shirali-Shahreza, S.: Examining the usage of feedback vibration in Nintendo DS handheld game console. In: Proceedings of the 11th International Conference on Advanced Communication Technology, pp. 1997–2000. IEEE Press, Gangwon-Do (2009)

    Google Scholar 

  18. 18.

    Sorana, D., Jäntschi, L., Radu, E.: Statistical approaches in analysis of variance: from random arrangements to Latin square experimental design. Leonardo J. Sci. 8(15), 71–82 (2009)

    Google Scholar 

Download references


This work has been supported by the projects PEII09-0054-9581 and TIN2008-06596-C02-01. Thanks to the users who have participated voluntarily in the experiments.

Author information



Corresponding author

Correspondence to Jonatan Martínez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martínez, J., García, A.S., Molina, J.P. et al. An empirical evaluation of different haptic feedback for shape and texture recognition. Vis Comput 29, 111–121 (2013).

Download citation


  • Force feedback
  • Vibrotactile
  • Textures
  • Dataglove