The Visual Computer

, Volume 28, Issue 6–8, pp 597–602 | Cite as

Controlling shapes of air bubbles in a multi-phase fluid simulation

  • Po-Ram Kim
  • Ho-Young Lee
  • Jong-Hyun Kim
  • Chang-Hun Kim
Original Article

Abstract

Controlling shapes is a challenging problem in a multi-phase fluid simulation. Bubble particles enable the details of air bubbles to be represented within a simulation based on an Euler grid. We control the target shapes of bubbles by the gradient vectors of the signed distance field and attraction forces associated with control particles. Our hybrid approach enables to simulate physically plausible movements of bubbles while preserving the details of a target shape. Furthermore, we control the paths of moving bubbles using user-defined curves and the shape of an air bubbles by drag force. An accurate model of the drag force near the fluid surface means that bubbles have realistic ellipsoidal shapes.

Keywords

Fluid simulation Air bubble control Ellipsoidal bubble shape 

Supplementary material

371_2012_696_MOESM1_ESM.wmv (20.1 mb)
(WMV 20.1 MB)

References

  1. 1.
    Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. In: ACM SIGGRAPH 2007 Papers (SIGGRAPH 07). ACM, New York (2007) Google Scholar
  2. 2.
    Bell, N., Yu, Y., Mucha, P.J.: Particle-based simulation of granular materials. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 05), pp. 77–86. ACM, New York (2005) CrossRefGoogle Scholar
  3. 3.
    Cleary, P.W., Pyo, S.H., Prakash, M., Koo, B.K.: Bubbling and frothing liquids. In: ACM SIGGRAPH 2007 papers (SIGGRAPH 07). ACM, New York (2007) Google Scholar
  4. 4.
    Coleman, P.: Motion control for fluid animation: flow along a control path. Tech. rep., Ohio State University, Undergraduate thesis (2002) Google Scholar
  5. 5.
    Desbrun, M., Gascuel, M.-P.: Smoothed particles: A new paradigm for animating highly deformable bodies. In: Proceedings of the Eurographics Workshop on Computer Animation and Simulation 96, pp. 61–76. Springer, New York (1996) CrossRefGoogle Scholar
  6. 6.
    Enright, D., Marschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 02), pp. 736–744. ACM, New York (2002) CrossRefGoogle Scholar
  7. 7.
    Ellingsen, K., Risso, F.: On the rise of an ellipsoidal bubble in water: Oscillatory paths and liquid-induced velocity. J. Fluid Mech. 440, 235–268 (2001) MATHCrossRefGoogle Scholar
  8. 8.
    Eunchan, J., Kim, D., Song, O.-y.: A new SPH fluid simulation method using ellipsoidal kernels. J. Vis. (2011) Google Scholar
  9. 9.
    Greenwood, S.T., House, D.H.: Better with bubbles: enhancing the visual realism of simulated fluid. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 04), pp. 287–296. Eurographics Association, Aire-la-Ville (2004) CrossRefGoogle Scholar
  10. 10.
    Hong, J.-M., Kim, C.-H.: Controlling fluid animation with geometric potential: Research articles. Comput. Animat. Virtual Worlds 15, 147–157 (2004) CrossRefGoogle Scholar
  11. 11.
    Hong, J.-M., Kim, C.-H.: Discontinuous fluids. In: ACM SIGGRAPH 2005 Papers (SIGGRAPH 05), pp. 915–920. ACM, New York (2005) CrossRefGoogle Scholar
  12. 12.
    Hong, J.-M., Lee, H.-Y., Yoon, J.-C., Kim, C.-H.: Bubbles alive. In: ACM SIGGRAPH 2008 papers (SIGGRAPH 08), pp. 48:1–48:4. ACM, New York (2008) Google Scholar
  13. 13.
    Kim, B., Liu, Y., Llamas, I., Rossignac, J.: Flowfixer: Using BFECC for fluid simulation. In: NPH, pp. 51–56 (2005) Google Scholar
  14. 14.
    Kim, B., Liu, Y., Llamas, I., Jiao, X., Rossignac, J.: Simulation of bubbles in foam with the volume control method. ACM Trans. Graph. 26 (2007). (In Proc. of SIGGRAPH) Google Scholar
  15. 15.
    Kim, B.: Multi-phase fluid simulations using regional level sets. In: ACM SIGGRAPH ASIA 2010 papers (SIGGRAPH ASIA 10), Seoul, Korea, December 2010. vol. 29(6). ACM, New York (2010) Google Scholar
  16. 16.
    Kim, D., Song, O.-Y., Ko, H.-S.: A practical simulation of dispersed bubble flow. ACM Trans. Graph. 29(4), 1–5 (2010) CrossRefGoogle Scholar
  17. 17.
    Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. In: ACM SIGGRAPH 2004 Papers (SIGGRAPH 04), pp. 457–462. ACM, New York (2004) CrossRefGoogle Scholar
  18. 18.
    Lee, H.-Y., Hong, J.-M., Kim, C.-H.: Interchangeable sph and level set method in multiphase fluids. Vis. Comput. 25, 713–718 (2009) CrossRefGoogle Scholar
  19. 19.
    Losasso, F., Talton, J., Kwatra, N., Fedkiw, R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graph. 14, 797–804 (2008) CrossRefGoogle Scholar
  20. 20.
    Muller, M., Charypar, D., Gross, M.: Particlebased fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 03), pp. 154–159. Eurographics Association, Aire-la-Ville (2003) Google Scholar
  21. 21.
    Muller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 03), pp. 154–159. Eurographics Association, Aire-la-Ville (2003) Google Scholar
  22. 22.
    Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., Fedkiw, R.: Directable photorealistic liquids. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 04), pp. 193–202. Eurographics Association, Aire-la-Ville (2004) CrossRefGoogle Scholar
  23. 23.
    Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., Fedkiw, R.: Two-way coupling of fluids to rigid and deformable solids and shells. In: ACM SIGGRAPH 2008 papers (SIGGRAPH 08), pp. 46:1–46:9. ACM, New York (2008) Google Scholar
  24. 24.
    Shin, S.-H., Kim, C.-H.: Target-driven liquid animation with interfacial discontinuities. Comput. Animat. Virtual Worlds 18, 447–453 (2007) CrossRefGoogle Scholar
  25. 25.
    Shew, W.L., Poncet, S., Pinton, J.F.: Viscoelastic effects on the dynamics of a rising bubble. J. Stat. Mech. P01009 (2006) Google Scholar
  26. 26.
    Stam, J.: Stable fluids. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 99), pp. 121–128. ACM/Addison-Wesley, New York (1999) CrossRefGoogle Scholar
  27. 27.
    Shi, L., Yu, Y.: Taming liquids for rapidly changing targets. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 05), pp. 229–236. ACM, New York (2005) CrossRefGoogle Scholar
  28. 28.
    Thurey, N., Keiser, R., Pauly, M., De U, R.: Detail-preserving fluid control. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 06), pp. 7–12. Eurographics Association, Aire-la-Ville (2006) Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Po-Ram Kim
    • 1
  • Ho-Young Lee
    • 1
  • Jong-Hyun Kim
    • 1
  • Chang-Hun Kim
    • 1
  1. 1.Korea UniversitySeoulKorea

Personalised recommendations