Advertisement

The Visual Computer

, Volume 28, Issue 5, pp 511–525 | Cite as

Combinatorial mesh optimization

  • Vincent Vidal
  • Christian WolfEmail author
  • Florent Dupont
Original Article

Abstract

A new mesh optimization framework for 3D triangular surface meshes is presented, which formulates the task as an energy minimization problem in the same spirit as in Hoppe et al. (SIGGRAPH’93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, 1993). The desired mesh properties are controlled through a global energy function including data attached terms measuring the fidelity to the original mesh, shape potentials favoring high quality triangles, and connectivity as well as budget terms controlling the sampling density. The optimization algorithm modifies mesh connectivity as well as the vertex positions. Solutions for the vertex repositioning step are obtained by a discrete graph cut algorithm examining global combinations of local candidates.

Results on various 3D meshes compare favorably to recent state-of-the-art algorithms. Applications consist in optimizing triangular meshes and in simplifying meshes, while maintaining high mesh quality. Targeted areas are the improvement of the accuracy of numerical simulations, the convergence of numerical schemes, improvements of mesh rendering (normal field smoothness) or improvements of the geometric prediction in mesh compression techniques.

Keywords

Triangular meshes Mesh optimization Discrete optimization Graph cuts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: SIGGRAPH’93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (1993) Google Scholar
  2. 2.
    Shewchuk, J.R.: What is a good linear element? Interpolation, conditioning, and quality measures. In: 11th International Meshing Roundtable, pp. 115–126 (2002) Google Scholar
  3. 3.
    Alliez, P., Ucelli, G., Gotsman, C., Attene, M.: Recent Advances in Remeshing of Surfaces. Springer, Berlin (2008) Google Scholar
  4. 4.
    Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. In: ACM Siggraph, pp. 905–914 (2004) Google Scholar
  5. 5.
    Valette, S., Chassery, J.-M.: Approximated centroidal Voronoi diagrams for uniform polygonal mesh coarsening. Comput. Graph. Forum 23(3), 381–389 (2004) (Eurographics 2004 Proceedings) CrossRefGoogle Scholar
  6. 6.
    Valette, S., Chassery, J.-M., Prost, R.: Generic remeshing of 3d triangular meshes with metric-dependent discrete Voronoi diagrams. IEEE Trans. Vis. Comput. Graph. 14(2), 369–381 (2008) CrossRefGoogle Scholar
  7. 7.
    Alliez, P., Colin de Verdière, E., Devillers, O., Isenburg, M.: Isotropic surface remeshing. In: IEEE Shape Modeling International, pp. 49–58 (2003) CrossRefGoogle Scholar
  8. 8.
    Guskov, I., Khodakovsky, A., Schröder, P., Sweldens, W.: Hybrid meshes: multiresolution using regular and irregular refinement. In: ACM SIGGRAPH Symposium on Computational Geometry, pp. 264–272 (2002) Google Scholar
  9. 9.
    Sifri, O., Sheffer, A., Gotsman, C.: Geodesic-based surface remeshing. In: 12th International Meshing Roundtable, pp. 189–199 (2003) Google Scholar
  10. 10.
    Peyré, G., Cohen, L.: Geodesic remeshing using front propagation. Int. J. Comput. Vis. 69(1), 145–156 (2006) CrossRefGoogle Scholar
  11. 11.
    Surazhsky, V., Gotsman, C.: Explicit surface remeshing. In: Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 20–30 (2003) Google Scholar
  12. 12.
    Surazhsky, V., Alliez, P., Gotsman, C.: Isotropic remeshing of surfaces: a local parameterization approach. In: 12th International Meshing Roundtable, pp. 215–224 (2003) Google Scholar
  13. 13.
    Winkler, T., Hormann, K., Gotsman, C.: Mesh massage: a versatile mesh optimization framework. Vis. Comput. 24(7), 775–785 (2008) CrossRefGoogle Scholar
  14. 14.
    Liu, L., Tai, C.-L., Ji, Z., Wang, G.: Non-iterative approach for global mesh optimization. Comput. Aided Des. 39(9), 772–782 (2007) CrossRefGoogle Scholar
  15. 15.
    Nealen, A., Igarashi, T., Sorkine, O., Alexa, M.: Laplacian mesh optimization. In: ACM Graphite, pp. 381–389 (2006) CrossRefGoogle Scholar
  16. 16.
    Cohen-Steiner, D., Morvan, J.: Restricted Delaunay triangulations and normal cycle. In: ACM SIGGRAPH Symposium on Computational Geometry, pp. 312–321 (2003) Google Scholar
  17. 17.
    Jiao, X., Heath, M.T.: Feature detection for surface meshes. In: Proceedings of 8th International Conference on Numerical Grid Generation in Computational Field Simulations, pp. 705–714 (2002) Google Scholar
  18. 18.
    Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984) zbMATHCrossRefGoogle Scholar
  19. 19.
    Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004) CrossRefGoogle Scholar
  20. 20.
    Pottmann, H., Hofer, M.: Geometry of the squared distance function to curves and surfaces. In: Hege, H.-C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 223–244. Springer, Berlin (2003) Google Scholar
  21. 21.
    Wang, W., Pottmann, H., Liu, Y.: Fitting B-spline curves to point clouds by curvature-based squared distance minimization. ACM Trans. Graph. 25(2), 214–238 (2006) CrossRefGoogle Scholar
  22. 22.
    Lempitsky, V., Roth, S., Carsten, R.: Fusionflow: discrete-continuous optimization for optical flow estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008) CrossRefGoogle Scholar
  23. 23.
    Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph cuts—a review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1274–1279 (2007) CrossRefGoogle Scholar
  24. 24.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004) CrossRefGoogle Scholar
  25. 25.
    Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley, New York (2000) Google Scholar
  26. 26.
    Rother, C., Kolmogorov, V., Lempitsky, V., Szummer, M.: Optimizing binary MFRs via extended roof duality. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007) CrossRefGoogle Scholar
  27. 27.
    Rother, C., Kumar, S., Kolmogorov, V., Blake, A.: Digital tapestry. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 589–596 (2005) Google Scholar
  28. 28.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, San Mateo (1988) Google Scholar
  29. 29.
    Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., Rother, C.: A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 1068–1080 (2008) CrossRefGoogle Scholar
  30. 30.
    Cignoni, P., Rocchini, C., Scopigno, R.: Metro: Measuring error on simplified surfaces. Comput. Graph. Forum 17(2), 167–174 (1998) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.INSA-Lyon, LIRIS, UMR 5205Université de Lyon, CNRSVilleurbanneFrance
  2. 2.Université Lyon 1, LIRIS, UMR 5205Université de Lyon, CNRSVilleurbanneFrance

Personalised recommendations