Advertisement

The Visual Computer

, Volume 28, Issue 5, pp 445–462 | Cite as

Certified meshing of Radial Basis Function based isosurfaces

  • A. ChattopadhyayEmail author
  • S. Plantinga
  • G. Vegter
Original Article
  • 101 Downloads

Abstract

Radial Basis Functions are widely used in scattered data interpolation. The surface-reconstruction method using radial basis functions consists of two steps: (i) computing an interpolating implicit function the zero set of which contains the points in the data set, followed by (ii) extraction of isocurves or isosurfaces. In this paper we focus on the second step, generalizing the work on certified meshing of implicit surfaces based on interval arithmetic (Plantinga and Vegter in Visual Comput. 23:45–58, 2007). It turns out that interval arithmetic, and even the usually faster affine arithmetic, are far too slow in the context of RBF-based implicit surface meshing. We present optimized strategies giving acceptable running times and better space complexity, exploiting special properties of RBF-interpolants. We present pictures and timing results confirming the improved quality of these optimized strategies.

Keywords

Certified meshing Geometric computing Radial Basis Functions Interval arithmetic Affine arithmetic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boissonnat, J.-D., Cohen-Steiner, D., Vegter, G.: Isotopic implicit surface meshing. Discrete Comput. Geom. 39, 138–157 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Boost interval arithmetic library: http://www.boost.org (2011)
  3. 3.
    Buhmann, M.: Radial Basis Functions. Cambridge Monographs on Applied and Computational Mathematics, vol. 12. Cambridge University Press, Cambridge (2003) zbMATHCrossRefGoogle Scholar
  4. 4.
    Burr, M., Choi, S., Galehouse, B., Yap, C.: Complete subdivision algorithms, II: Isotopic meshing of singular algebraic curves. In: Proc. Int’l Symp. Symbolic and Algebraic Comp. (ISSAC’08), pp. 87–94, Hagenberg, Austria, Jul. 20–23, 2008 (2008) Google Scholar
  5. 5.
    C++ affine arithmetic library: http://savannah.nongnu.org/projects/libaffa (2011)
  6. 6.
    GTS the gnu triangulated surface library: http://gts.sourceforge.net (2011)
  7. 7.
    de Figueiredo, L.H., Stolfi, J.: Affine arithmetic: concepts and applications. Numer. Algorithms 37(1–4), 147–158 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Iske, A.: Scattered data modelling using radial basis functions. In: Iske, A., Quak, E., Floater, M.S. (eds.) Tutorials on Multiresolution in Geometric Modelling, Mathematics and Visualization, pp. 287–315. Springer, Heidelberg (2002) Google Scholar
  9. 9.
    Lodha, S., Franke, R.: Scattered data techniques for surfaces. In: Proceedings of Dagstuhl Conference on Scientific Visualization, pp. 182–222. IEEE Computer Society Press, Los Alamitos (1999) Google Scholar
  10. 10.
    Lopes, H., Oliveria, J., Figueiredo, L.: Robust adaptive polygonal approximation of implicit curves. Comput. Graph. 26(6), 841–852 (2002) CrossRefGoogle Scholar
  11. 11.
    Lorensen, W., Cline, H.: Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graph., 21, 163–169 (1987). Proceedings SIGGRAPH 1987, Annual Conference Series CrossRefGoogle Scholar
  12. 12.
    Martin, R., Shou, H., Voiculescu, I., Bowyer, A., Wang, G.: Comparison of interval methods for plotting algebraic curves. Comput. Aided Geom. Des. 19(7), 553–587 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Moore, R.: Interval Analysis. Prentice-Hall, New York (1996) Google Scholar
  14. 14.
    Plantinga, S., Vegter, G.: Isotopic meshing of implicit surfaces. Vis. Comput. 23, 45–58 (2007) CrossRefGoogle Scholar
  15. 15.
    Powell, M.J.D.: Approximation Theory and Methods. Cambridge University Press, Cambridge (1981) zbMATHGoogle Scholar
  16. 16.
    Schaback, R., Wendland, H.: Characterization and construction of radial basis functions. In: Dyn, N., Leviatan, D., Levin, D., Pinkus, A. (eds.) Multivariate Approximation and Applications, Chap. 1, pp. 1–24. Cambridge University Press, Cambridge (2001) CrossRefGoogle Scholar
  17. 17.
    Shou, H., Song, W., Shen, J., Martin, R., Wang, G.: A recursive Taylor method for ray casting algebraic surfaces. In: Proc. 2006 Int. Conf. Computer Graphics and Virtual Reality, pp. 196–202. CSREA Press, Las Vegas (2006). ISBN:1932415858 Google Scholar
  18. 18.
    Stander, B., Hart, J.: Guaranteeing the topology of an implicit surface polygonizer for interactive modeling. In: Proceedings SIGGRAPH, pp. 279–286 (1997) CrossRefGoogle Scholar
  19. 19.
    Stolfi, J., de Figueiredo, L.: Self-validated numerical methods and applications. In: Brazilian Mathematics Colloquium Monograph, IMPA (1997) Google Scholar
  20. 20.
    Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2004) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.University of GroningenGroningenThe Netherlands

Personalised recommendations